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Abstract

Retention of histidine-containing peptides in immobilized metal-affinity chromatography (IMAC) has been studied using several hundred model
peptides. Retention in a Nickel column is primarily driven by the number of histidine residues; however, the amino acid composition of the peptide
also plays a significant role. A regression model based on support vector machines was used to learn and subsequently predict the relationship
between the amino acid composition and the retention time on a Nickel column. The model was predominantly governed by the count of the
histidine residues, and the isoelectric point of the peptide.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Immobilized metal-affinity chromatography (IMAC) is an
important tool for purification of proteins containing residues
that form metal complexes, e.g., histidine, cysteine and tryp-
tophan [1–4]. The poly-histidine tag is extremely useful in
molecular biology where it serves to facilitate isolation of
genetically engineered proteins from complex mixtures and
can be used for targeted immobilization of these proteins
[4,5].

We are developing a high-throughput method for the purifica-
tion of peptide-oligonucleotide conjugates. One of our strategies
is to place three histidines (His3) at the amino-terminus of the
peptide, and three histidines at the 5′ end of the oligonucleotide.
When joined together, the six histidines (His6) should form
a tag that can be bound to a Nickel–Sepharose affinity col-
umn. After washing away unreacted components, the purified
peptide–oligonucleotide conjugate can be eluted with a gradi-
ent of increasing imidazole concentration. For this strategy to
be successful, the concentration of imidazole that elutes His3
must be significantly less than the concentration that elutes His6.

∗ Corresponding author. Tel.: +1 408 730 5700x513.
E-mail address: bkermani@completegenomics.com (B.G. Kermani).

In addition, the elution concentration for His6 should be rela-
tively insensitive to the identity of amino acids surrounding the
His6 tag. For brevity, throughout this manuscript, we use the
term “imidazole concentration” in lieu of “the concentration of
imidazole at which elution occurs.”

Surprisingly, there is little information available in the litera-
ture on the relative affinity for Nickel–Sepharose, in the presence
of imidazole gradients, of polyhistidine-containing peptides and
the influence of surrounding amino acids. Consequently, we
synthesized an array of model compounds containing different
numbers of histidines in various sequential arrangements and in
combination with various other amino acids. Here we present
comprehensive information that should facilitate the design and
purification of engineered peptides and proteins.

By training a model using a subset of the peptides (with
measured imidazole concentration required for elution from a
Nickel–Sepharose affinity column) we were able to predict the
imidazole concentration needed for elution from the column for
a large group of peptides. Table 1 shows the amino acid sequence
for the peptides of this experiment, along with their measured
imidazole concentrations. Fig. 1 shows the dependency of
imidazole concentration on several parameters, including the
number of histidines and the isoelectric point. As can be seen
from Fig. 1a, there is a relationship between the number of
histidines (nHis, nH) and the imidazole concentration; however,
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Table 1
Peptides and imidazole concentration

Peptide Im concentration (M)

GAGAHGAGAGY 0.08
GAGHHDHHGAY 0.09
GAGHHEHHGAY 0.09
HGAGAGAGAGY 0.09
HHAGAGAGAGY 0.09
HRIFLAGDEDY 0.09
GAGAHHGAGA 0.1
GAGAHHGAGA 0.1
GAGAHHGAGAY 0.1
GAGAHHGAGAY 0.1
GAGAHWGAGAY 0.1
GAGRRWGAGAY 0.1
GAHGAGAHGAY 0.1
GAHGAGHAGAY 0.1
GAHGAHGAGAY 0.1
HGAGAGAGARY 0.1
HRIFLAGDKDY 0.1
GAGHAHGAGAY 0.11
HRAGAGAGAGY 0.11
GAGAWWGAGAY 0.12
GAHHEEHHGAY 0.12
GAHHGAGAHGY 0.12
GAHHGAGHAGY 0.12
GAHHGAHGAGY 0.12
HHHGAGAGAGY 0.12
AHHSGASGASGASGHHY 0.13
ASGAHHSGASGASGHHY 0.13
ASGASGAHHSGASGHHY 0.13
ASGASGASGAHHSGHHY 0.13
ASGASGASHHGASGHHY 0.13
ASGASGHHASGASGHHY 0.13
ASGASHHGASGASGHHY 0.13
ASGHHASGASGASGHHY 0.13
ASHHGASGASGASGHHY 0.13
EEEHHHHEEEY 0.13
EEEHHHHEEEY 0.13
EEHHHHEEEY 0.13
ESEHHHHESEY 0.13
GAHHEGHHGAY 0.13
GAHHGHAGAGY 0.13
HHGAGAGAGRY 0.13
RRHHGGHHEEY 0.13
ASGASGASGASHHGHHY 0.14
ASGASGASGHHASGHHY 0.14
EEHHHHEEKY 0.14
ESHHRSHHESY 0.14
GAGAHHHGAG 0.14
GAGAHHHGAG 0.14
GAGAHHHGAGY 0.14
GAGAHHHGAGY 0.14
GAGAHWWGAGY 0.14
GAGARWWGAGY 0.14
GAGHHWGAGAY 0.14
GAHHIIHHGAY 0.14
GAHHLLHHGAY 0.14
GAQHHAHHQAY 0.14
HHAGAGAGRRY 0.14
HHASGASGASGASGHHY 0.14
GAHHERHHGAY 0.15
GAHHGAGHHAY 0.15
GAHHGAHHGAY 0.15
GAHHGAHHGAY 0.15
GAHHGGHHGAY 0.15
GAHHIGHHGAY 0.15

Table 1 ( Continued )

Peptide Im concentration (M)

GAHHLGHHGAY 0.15
GAHHSGHHGAY 0.15
HASGAHSGASHGASGHY 0.15
HASGHASGHASGHASGY 0.15
HASHGAHSGHASGASGY 0.15
HHASGASGASGASGHHY 0.15
HRHGAGAGAGY 0.15
KEHHHHEEEY 0.15
REEHHHHEEEY 0.15
EEKHHHHKEEY 0.16
GAGHHAHHGAY 0.16
GAGHHIHHGAY 0.16
GAGHHLHHGAY 0.16
GAGHHMHHGAY 0.16
GAGHHPHHGAY 0.16
GAGHHQHHGAY 0.16
GAHHFGHHGAY 0.16
GAHHGHHAGAY 0.16
GANHHAHHNAY 0.16
GHHAGAGHHAY 0.16
KDHHHHDDDY 0.16
AAHHHHAADY 0.17
DDDHHHHDDDY 0.17
DDHHHHDDDY 0.17
FFLHHHHESEY 0.17
GAGHHFHHGAY 0.17
GAGHHGHHGAY 0.17
GAGHHKHHGAY 0.17
GAGHHNHHGAY 0.17
GAHHAHHGAGY 0.17
GAHHFFHHGAY 0.17
HAHSHGHASGASGASGY 0.17
HASGASGASGASGHHHY 0.17
HHHHAGAGAGY 0.17
HRHRAGAGAGY 0.17
KKHHHHDDDY 0.17
KKKHHHHEEEY 0.17
KSKHHHHESEY 0.17
REEHHHHEERY 0.17
RSHHESHHRSY 0.17
AAAHHHHAAAY 0.18
AAKHHHHAADY 0.18
AAKHHHHAAEY 0.18
AAKHHHHADAY 0.18
AAKHHHHAEAY 0.18
AAKHHHHDAAY 0.18
AAKHHHHEAAY 0.18
AKAHHHHAADY 0.18
DDHHHHDDKY 0.18
DDKHHHHKDDY 0.18
EEGASGASGASGHHHHY 0.18
EKHHHHKEKY 0.18
FFLHHHHKSKY 0.18
GAGHHRHHGAY 0.18
HASGASGASGASGHHHY 0.18
KAAHHHHAAEY 0.18
KKHHHHEEEY 0.18
PPPHHHHPPPY 0.18
RDDHHHHDDDY 0.18
RREESGASGASGHHHHY 0.18
RREHHHHEEEY 0.18
SSSHHHHSSSY 0.18
AAHHHHAAKY 0.19
AARHHHHADAY 0.19
AARHHHHDAAY 0.19
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Table 1 ( Continued )

Peptide Im concentration (M)

AKAHHHHAAEY 0.19
ASGASGASGASGHHHHY 0.19
EERHHHHREEY 0.19
GAGAHHHHGA 0.19
GAGAHHHHGAY 0.19
GAGAHHHHGAY 0.19
GAGAHHHHGAY 0.19
GAGAHHHHGAY 0.19
GAHHRRHHGAY 0.19
HHHGAGAGRRY 0.19
HHHHHSGESPSYFTA 0.19
ILVHHHHVLIY 0.19
KEHHHHEKKY 0.19
KKHHHHDDKY 0.19
KKHHHHDKDY 0.19
KKHHHHKDDY 0.19
RAAHHHHAADY 0.19
RDDHHHHDDRY 0.19
RSRHHHHESEY 0.19
AAKHHHHAAKY 0.2
AAKHHHHAKAY 0.2
AAKHHHHKAAY 0.2
AARHHHHAADY 0.2
AARHHHHAAEY 0.2
AARHHHHAEAY 0.2
AARHHHHEAAY 0.2
ARAHHHHAADY 0.2
ASGASGASGASGHHHHY 0.2
GAGHHWHHGAY 0.2
GGGHHHHGGGY 0.2
HHHHHSGEAPSYFTA 0.2
HHHHHSGESPWNFTA 0.2
HHHHHSGESPWNLTA 0.2
HHHHHSGRSPSYLTA 0.2
KAAHHHHAAKY 0.2
KKHHHHEEKY 0.2
KKHHHHEKEY 0.2
KKHHHHKEEY 0.2
RAAHHHHAAEY 0.2
RRDHHHHDDDY 0.2
RRGASGASGASGHHHHY 0.2
RRRHHHHDDDY 0.2
RRRHHHHEEEY 0.2
AAKHHHHAAKY 0.21
AAKHHHHAKAY 0.21
AAKHHHHKAAY 0.21
AKAHHHHAAKY 0.21
ARAHHHHAAEY 0.21
DDRHHHHRDDY 0.21
DKHHHHKDKY 0.21
GAGHHWWGAGY 0.21
HHHAGAGRRRY 0.21
HHHHHGAGAGY 0.21
HHHHHSGEAPSNFTA 0.21
HHHHHSGEAPWNLTA 0.21
HHHHHSGESLSNFTA 0.21
HHHHHSGESLSYFTA 0.21
HHHHHSGESLWNLTA 0.21
HHHHHSGESPRYFTA 0.21
HHHHHSGESPSNFTA 0.21
HHHHHSGESPWRLTA 0.21
HHHHHSGRSLSYLTA 0.21
KDHHHHDKKY 0.21
AKAHHHHAAKY 0.22
DKKHHHHKKDY 0.22

Table 1 ( Continued )

Peptide Im concentration (M)

GARRWWRRGAY 0.22
HHHHHSGEALSNFTA 0.22
HHHHHSGEAPRNLTA 0.22
HHHHHSGEAPWNFTA 0.22
HHHHHSGESLWNFTA 0.22
HHHHHSGESPRNFTA 0.22
HHHHHSGRALSYLTA 0.22
HHHHHSGRAPSNLTA 0.22
HHHHHSGRAPSYFTA 0.22
HHHHHSGRAPWNLTA 0.22
HHHHHSGRSPSYFTA 0.22
HHHHHSGRSPWNLTA 0.22
HRHRHGAGAGY 0.22
KKHHHHDKKY 0.22
RRHHGGHHRRY 0.22
RSHHRSHHRSY 0.22
AARHHHHAARY 0.23
EKKHHHHKKEY 0.23
HHHHHSGEALSYFTA 0.23
HHHHHSGEALWNLTA 0.23
HHHHHSGEAPRNFTA 0.23
HHHHHSGEAPRYFTA 0.23
HHHHHSGEAPWRLTA 0.23
HHHHHSGESLRNFTA 0.23
HHHHHSGESLRYFTA 0.23
HHHHHSGESLWRLTA 0.23
HHHHHSGESPWYFTA 0.23
HHHHHSGRAPSNFTA 0.23
HHHHHSGRSPRYLTA 0.23
HHHHHSGRSPSNFTA 0.23
KKHHHHEKKY 0.23
KSKHHHHKSKY 0.23
RRRHHHHEEEY 0.23
AARHHHHARAY 0.24
AARHHHHRAAY 0.24
ARAHHHHAARY 0.24
GAGHHHHHGA 0.24
GAGHHHHHGAY 0.24
HHHHHHAGAGY 0.24
HHHHHSGEALWNFTA 0.24
HHHHHSGEAPRRLTA 0.24
HHHHHSGRALRYLTA 0.24
HHHHHSGRALSYFTA 0.24
HHHHHSGRAPRYFTA 0.24
HHHHHSGRAPWNFTA 0.24
HHHHHSGRSLRYLTA 0.24
HHHHHSGRSPSRLTA 0.24
HHHHHSGRSPWNFTA 0.24
HRHRHRAGAGY 0.24
RAAHHHHAARY 0.24
AARHHHHAARY 0.25
AARHHHHARAY 0.25
AARHHHHRAAY 0.25
HHHHHSGEALRNFTA 0.25
HHHHHSGEALRYFTA 0.25
HHHHHSGEALWRLTA 0.25
HHHHHSGEAPWYFTA 0.25
HHHHHSGRAPRNFTA 0.25
HHHHHSGRAPSRLTA 0.25
HHHHHSGRAPWRLTA 0.25
HHHHHSGRSLRNLTA 0.25
HHHHHSGRSLRYFTA 0.25
HHHHHSGRSLWNFTA 0.25
HHHHHSGRSPRNFTA 0.25
HHHHHSGRSPSRFTA 0.25



Aut
ho

r's
   

pe
rs

on
al

   
co

py

152 B.G. Kermani et al. / Sensors and Actuators B 125 (2007) 149–157

Table 1 ( Continued )

Peptide Im concentration (M)

HHHHHSGRSPWRLTA 0.25
KKKHHHHKKKY 0.25
RAAHHHHAARY 0.25
RERHHHHRERY 0.25
RRRHHHHDDRY 0.25
RRRHHHHRDDY 0.25
ARAHHHHAARY 0.26
FFLHHHHRSRY 0.26
HHHAGAGHHHY 0.26
HHHAGAHHHGY 0.26
HHHAGHHHAGY 0.26
HHHAHHHGAGY 0.26
HHHHHSGESLWYFTA 0.26
HHHHHSGRALRYFTA 0.26
HHHHHSGRSLRNFTA 0.26
HHHHHSGRSLSRFTA 0.26
HHHHHSGRSLWRLTA 0.26
HHHHHSGRSPRRLTA 0.26
HHHHHSGRSPWYLTA 0.26
RREHHHHERRY 0.26
RRRHHHHDRDY 0.26
FFLHHHHLFFY 0.27
HHHGHHHGAGY 0.27
HHHHHSGRALWRLTA 0.27
RRRHHHHEERY 0.27
RRRHHHHEREY 0.27
RRRHHHHREEY 0.27
GAHHHHHHGA 0.28
GAHHHHHHGAY 0.28
HHHHHSGEALWYFTA 0.28
HHHHHSGRALSRFTA 0.28
HHHHHSGRAPWYFTA 0.28
HHHHHSGRSLWRFTA 0.28
HHHHHSGRSLWYLTA 0.28
HHHHHSGRSPRRFTA 0.28
HHHHHSGRSPWYFTA 0.28
RDRHHHHRDRY 0.28
RRDHHHHDRRY 0.28
DRRHHHHRRDY 0.29
HHHHHHHGAGY 0.29
KKKHHHHKKKY 0.29
HHHHHSGRALRRFTA 0.3
RSRHHHHRSRY 0.3
ERRHHHHRREY 0.31
HHHHHSGRALWYFTA 0.31
RRRHHHHDRRY 0.32
GHHHHHHHGAY 0.33
HHHHHHHHAGY 0.33
RRRHHHHERRY 0.34
HHHHHSGRSPWRFTA 0.35
GHHHHHHHHAY 0.37
RRRHHHHKKKY 0.37
RRRHHHHRRRY 0.39
HHHHHHHHHAY 0.41
HHHHHHHHHHY 0.46
RRRHHHHRRRY 0.46

this relationship is not simple. Fig. 1b shows that imidazole
concentration is also a function of the composition of the pep-
tide (in this case as measured by the isoelectric point). Fig. 1c
shows how imidazole concentration varies as a function of the
number of histidines and the number of histidine pairs (nHisHis,
nHH).

2. Methods

The objective of this study is to generate a regression model
that takes several parameters from the peptide sequence, and
generates an estimate for the imidazole concentration. The nec-
essary (optimal) number of the inputs is unknown (Fig. 2). Thus,
the goal is to find the best model and the minimal number
of informative inputs that are capable of predicting the imida-
zole concentration. A regression (as opposed to a classification)
model is needed for this predictor, since the output, i.e., imida-
zole concentration, takes continuous values.

To address the problem, we started with the simplest models,
i.e., a linear model. However, a simple linear model was found
to be insufficient in capturing all the dependencies of the system.
Therefore, we adopted various non-linear regression models for
trial. The most simplistic (non-linear) model is a model with one
input—number of histidines. The performance of this model was
deemed insufficient in view of the alternatives. The next model
that we tried was a model with two inputs—nHis and isoelec-
tric point. A thin-plate spline was used to model this two-input
system. While the performance of this system was better than
the previous one, it was found that in this model, a linear com-
bination of nHis and nHisHis is more informative than nHis
by itself. Therefore, a third model with the following parame-
ters was made: (1) isoelectric point, (2) nHis + Beta × nHisHis
(Fig. 3). The parameter Beta was found to have an optimal value
of approximately 2 (Fig. 4). The Beta value of 2 has a physi-
cal interpretation, i.e., it matches the hypothesis that in a Nickel
column, each Nickel atom interacts with two histidine residues.

While the performance of the thin-plate spline is rather sat-
isfactory, it has the following shortcomings:

(1) It is only capable of handling 2 inputs. Note that in order
to handle the nHisHis situation, we had to sum it with the
nHis, in a linear fashion, in order to avoid having an extra
input.

(2) The surface of the thin-plate spline had local modulations
that are aggravated by local noise or data sparsity. These
modulations are expected and are due to the “local” (as
opposed to global) nature of a spline-based model.

(3) Finding the optimal smoothing factor for the thin-plate
spline is non-trivial, and requires human supervision.

Due to the above limitations, we opted to use support vector
machines. By doing so, we were able to easily extend the model
to a larger number of inputs (than 2).

Support vector machines have been in the forefront of the
machine learning algorithms and have gained great popularity
in the last decade. This popularity is mostly stemmed from the
following [6,7]:

(1) SVMs are based on the structural risk minimization, and
thus have a built-in mechanism for regularization, i.e., they
are robust to over-training.

(2) Soft-margin SVMs can combine the empirical risk mini-
mization with the structural risk minimization, in order to
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Fig. 1. (a: top-left) relationship between imidazole concentration and nHis; (b: top-right) relationship between imidazole concentration and isoelectric point; (c:
bottom-left) the number of pairs of histidine vs. the number of single histidines in the set; (d: bottom-right) relationship between imidazole concentration as a function
of nHis and isoelectric point.

find an adequate trade-off between the model complexity
and the prediction error.

(3) By using non-linear kernels, non-linear systems can be mod-
eled using a linear system in the feature space, and yet
without having a need to project the solution into the feature
space.

(4) The solution to the underlying optimization problem in
SVMs is amenable to classical optimization techniques,
namely quadratic programming and linear programming.

The most popular application of SVM is in binary classifica-
tion [8,9]. However, it has been shown that regression problems
can also be modeled using SVM [6,7,10]. The SVM regression
(SVM-R) models are based on the epsilon-insensitive error mod-
els [6,7]. In an epsilon-insensitive model, the (absolute) error
values of epsilon or lower are mapped to zero, and the other
error values are mapped either linearly or quadratically. The lin-
ear error models are generally more resilient to outliers (with

Fig. 2. The general diagram of the regression problem.

high values). Therefore, in this study, we considered only linear
epsilon-sensitive regression SVMs.

2.1. Parameter selection

Table 2 shows the specifications of the SVM-R that was used
for this study. The SVM-R models (similar to most binary clas-
sifier SVMs) use a regularization parameter C [6] in order to
provide a balance between the prediction error and model com-
plexity. The optimal value of C is problem-dependent. Various
methods (including cross-validation) are usually used to set this

Fig. 3. The prediction results of the thin-plate spline model with the following
inputs: (1) isoelectric point, (2) a linear combination of nHis and nHisHis. The
points that are on the surface are the predicted. The separation between the actual
and the predicted points shows the error in prediction.
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Fig. 4. The error in the prediction of imidazole concentration while using the
above thin-plate spline model, as a function of the parameter Beta. The optimal
value of Beta appears to be close to 2.

value. In this study, based on several trial-and-errors, the value
of 10 was found to be appropriate for the parameter C, although
the results were not too sensitive to the specific choice of this
parameter.

In order to be able to define the parameter epsilon, we defined
an alternate error model. In this model, first for each experiment,
the correlation coefficient of the target values and the output
values was found. Then, the error was defined as one minus
this correlation coefficient. An error which was based on cor-
relation coefficient had a more tangible physical meaning for
our scientists, and thus was preferred over the alternatives, e.g.,
mean-squared error, mean absolute deviation. With this defini-
tion, the error values of 0.01 or lower were deemed clinically
insignificant, and thus the epsilon value was set to 0.01.

Training error = 1 − ρ(training output, training target) (1a)

Test error = 1 − ρ(test output, test target) (1b)

Bootstrap error = 0.632 × test error + 0.368 × training error

(1c)

Bootstrap correlation = 1 − bootstrap error (1d)

Bootstrap R-squared = (bootstrap correlation)2 (1e)

A polynomial SVM [11] was chosen for this study. An SVM
with order 1 was unable to perform as well as an SVM with
order 2. However, beyond order 2, the SVM did not significantly
improve the performance, and only resulted in longer training
sessions. Therefore, the order was fixed at 2.

Table 2
Specifications of the SVM

Type Polynomial

Order 2
Margin Soft
C 10
Epsilon 0.01

Fig. 5. The Box Plot of the Bootstrap R-squared values for the described SVM-R
system, with the following inputs: (1) number of argenines (R) (one input); (2)
number of histidines (H) (one input); (3) number of HisHis pairs; (4) compound
histidine count (Hc), i.e., number of histidines plus twice the number of HisHis
pairs (one input); (5) nHis and nHisHis (two inputs); (6) isoelectric point (one
input); (7) Hc and isoelectric point (two inputs); (8) nHis, nHisHis and isoelectric
point (three inputs); (9) Hc, isoelectric point, and number of argenines (three
inputs); (10) nHis, nHisHis, isoelectric point, and the number of argenines.

2.2. Model validation

In order to validate the model, a bootstrapping technique [12]
was used. In this technique, a total of 100 runs were executed for
each scenario. For each run, a subset of the total data was chosen
at random (with substitution). This set was called the training set.
The difference between this set and the original set was defined
as the test set. For each run, the training error and the test error
were defined as given in Eqs. (1a) and (1b). Subsequently, a
composite 0.632 bootstrap error [13] was computed (Eq. (1c));
and this error was used to find a bootstrap R-squared value (Eq.
(1e)). This R-squared value was used as a representation for the
appropriateness of the model.

Fig. 6. Surface plot of the imidazole concentration, for a two input systems,
with isoelectric point and Hc as the two inputs. The blue points are the expected
(experimental) measurements, and the red points are the SVM-predicted points.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of the article).
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Fig. 7. The results of a single training event. The left plot shows the correlation of the predicted values for imidazole concentration vs. the target (experimentally
measured) values.

3. Results

Synthesized model peptides and the concentration of imi-
dazole needed for their elution (extrapolated from the retention
time in gradient elution), are given in Table 1. All sequences were
synthesized on tyrosine-modified resin to simplify UV detection
(280 nm) of peptides eluted with increasing imidazole concen-
trations. Fig. 5 shows the results of running SVM-R on systems
with the following inputs:

(1) number of arginines (R) (one input);
(2) number of histidines (H) (one input);
(3) number of histidine pairs (one input);
(4) compound histidine count (Hc), i.e., number of histidines

plus twice the number of histidine pairs (one input);
(5) nHis and nHisHis (two inputs);
(6) isoelectric point (one input);
(7) Hc and isoelectric point (two inputs);
(8) nHis, nHisHis and isoelectric point (three inputs);
(9) Hc, isoelectric point, and number of arginines (three

inputs);
(10) nHis, nHisHis, isoelectric point, and the number of

arginines (four inputs).

By comparing the bootstrap R-squared values from the tested
systems, one would make the following observations:

(1) The Nickel column is also responsive to arginine, although
it is more sensitive to histidine.

(2) The Nickel column is more sensitive to pairs of histidines,
as opposed to single histidines.

(3) Isoelectric point by itself is informative in the predictive
system.

(4) The performance of the system improves significantly if the
isoelectric point and histidine (or histidine pair) information
are supplied simultaneously.

(5) The best performance is achieved in a system with four
inputs—number of histidines, number of histidine pairs,
isoelectric point, and the number of arginines.

(6) The performance of a three-input system with inputs—Hc,
isoelectric point and number of arginines is not too different
from the optimal system.

Visualizing systems with more than 2 inputs is difficult. Fig. 6
shows the performance of a 2-input (Hc and isoelectric point)
system. The quadratic shape of the surface is due to the specific
form of the SVM-R kernel, i.e., second-order polynomial. The
proximity of the actual and predicted points is a testimony to the
appropriateness of the fit.

Fig. 7 illustrates the differences between the target and
predicted values for one of the 100 bootstrap runs. The resid-
uals have patterns, which indicate that the fit has not been
optimal. This is partially due to the small sample size, and
partially due to the low order (i.e., 2) of the non-linear ker-
nel. However, due to the small sample size, the order of
the system was not increased (beyond 2) in order to keep
the model parsimonious, and thus more resilient to over-
training.

4. Conclusions

We performed an exhaustive study of the affinity of histidine-
rich peptide sequences for a Nickel–Sepharose column, using
elution by a gradient of increasing imadazole concentration as
a measure of affinity. Retention of histidine-containing pep-
tides depends on the arrangement of histidines as well as the
composition of other amino acids in the sequence. The high-
est performing regression model was obtained with a 4-input
system, with the following inputs: (1) number of histidines,
(2) number of histidine pairs, (3) number of arginines, and
(4) isoelectric point of the peptide sequence. We used the R-
squared metric for gauging the performance of the learning
algorithm. This metric was a function of the agreement between
the predicted and the observed values of imidazole concentra-
tion in our model. The system rendered a bootstrap R-squared
value of approximately 0.85, while trained with a second-
degree polynomial soft-kernel epsilon-insensitive regression
SVM.
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Appendix A. Experimental setup

Fmoc amino acids, BOP reagent and Rink resin
(0.42 mmol/g) were purchased from Novabiochem (EMD Bio-
sciences, Inc., San Diego, CA, USA). Solvents were from VWR
International, Inc. (West Chester, PA, USA). 4-Methylpiperidine
was from Sigma–Aldrich (Milwaukee, WI, USA).

Rink resin (300 mg) was added into a mixture of DMF and
DCM (10 ml total) to form a non-sedimenting suspension which
was distributed into the wells of flat bottom polypropylene
microtiterplates (Evergreen Scientific, Los Angeles, CA, USA).
The plates were placed into a centrifugal synthesizer [14,15].
An additional 100 �l of DMF was added into the plate wells
(beads sedimented) and the plate was centrifuged with a tilt of
6◦. A standard protocol was used for the synthesis to remove the
Fmoc protecting group; 4-methylpiperidine was used instead
piperidine [16]. Individual Fmoc-protected amino acids (0.3 M
solution in 0.3 M HOBt in DMF) were pipetted to the wells, and
a solution of BOP (0.6 M in DMF) and 1.2 M DIEA in DMF
was delivered to each well. Plates were oscillated five times and
allowed to rest for 50 s. (During oscillation, the plates are rotated
at a speed at which the liquid does not overflow the wall of the
well and solid support moves towards the outer side of the well.
When the rotation is stopped, liquid returns to the horizontal
position and beads distribute at the well bottom, thus mixing the
well content.) This procedure was repeated 30 times. The plate
was centrifuged and the addition of amino acids and reagents
was repeated. After another 30 cycles of oscillation and paus-
ing, the reagents were removed by centrifugation and washing
and de-protection was repeated to prepare the plate for the next
cycle of synthesis.

At the end of the synthesis the plate was dried in vacuo and
150 �l of mixture K [17] (TFA/thioanisol/water/phenol/EDT:
82.5:5:5:5:2.5 v/v/v/v/v) was added. The plate was capped and
shaken on the plate shaker for 3 h. The suspension was trans-
ferred by multi-channel pipettor to a filter plate (Orochem
Technologies, Lombard, IL, USA). The filtrate was collected
in a deep well plate (VWR) and precipitated with ether (600 �l),
and after standing in the refrigerator for 2 h, a pellet was formed
by centrifugation. The supernatant was removed by a surface
suction device and the pellet was re-suspended in ether (600 �l)
and centrifuged again. The process of supernatant removal and
re-suspension was repeated three times. The product was dried in
a Speedvac (ThermoSavant, Waltham, MA, USA), dissolved in
200 �l of H2O, or 50% dimethylsulfoxide (DMSO)–50% H2O
and samples of 20 �l were taken into 180 �l of water. Twenty
microliters were injected onto an HPLC column (Waters, Mil-
ford, MA, USA, �Bondapak, C18, 10 � particle, 125 Å pore,
3.9 mm × 150 mm, gradient 0.05% TFA in H2O to 70% ace-
tonitrile, 0.05% TFA in 15 min, flow rate, 1.5 ml/min, detection
by UV at 217 nm). MS was performed at HT-Labs (San Diego,
CA, USA).

The peptides were analyzed using HPLC containing a 1 ml
volume HisTrap column (Amersham Biosciences, Piscataway,
NJ, USA) with the detection at 260 nm. The peptides were
injected in 0.02 M sodium phosphate buffer pH 7.4 contain-
ing 0.5 M NaCl. The concentration of imidazole was increased
linearly from 0 to 0.5 M during 20 min.
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