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Abstmct~Thls paper presents a neuromorphie \Pproac
sensor-based machine olfaction that combines a portable ehemlcnl-
defection system' based on microbead array technologyfi
bmlogmally msplred model ‘of s:gnal processing in’ the: olfaetory
bulh. The sensor array contains hundreds of microbeads coated
thh solvatochrom;c dyes adsorbed in,; or eovalently attached
on, the matrix of various mlcrospheres When expased to odors,
each bead sensor responds with. correspondmg intensity ‘chianges,
spectral shifts, and time-dependent variations associated with the
fluorescent sensors. The bead: array responses. are: subsequently
procéssed using:a medel: of olfactory circuits that- captare the
following ' two functions: ‘ chemnotopic convergence “of . receptor
neurons and center ‘on—off surround lateral’ interactions. The
first circuit performs’ dnnensmnahty redncnon, transformmg the
high-dimensional microbead array response ‘into an orgnmzed
spatial pattern {i.e., an odor lmage) The second circuit enhances
the contrast of these spatlaE patterns, improving the separahrllty
of .odors. The model is"validated .on. an. experimental . dataset
containing the responses of a large array of microbead sensors to
five dlfferent'anolytes Our resulis indicate that the-model is able
to signifienntly improve the’ separability between odor patterns,
compared to that available from the raw sensor response :

Index Terms—Lateral inhibifion, machme olfaehon, neuromor-
phic computation, olfactory bulb optlcal mlcrobead sensors, sen-
sory convergence AR . :

‘L 'INT_RODUCTI'ON- S

ENSOR BASED 1nstruments for odor measutement have
emerged in the past two decades. [1] that combme an array
of cross-selecnve chem;cal sensors and a pattern recngmnon
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engine. A number of sensing technologies have been used
for these instruments, primarily metal oxide and conducting
polymer chemoresistors, snrface acoustic wave devices, quartz
microbalance resonatofs, and ﬁeld effect devices [2]. The
vast majority of these so- calied ‘electronic-nose” instruments
employ a modest number of sensors {e.g.; 4-32). In: contrast,
olfactory systems rely on a large number of receptor types
(~ 1000 receptors in humans 31, and each receptor type is
massively replicated. To narrow the dimensionality gap be-
tween biological olfactory systems and their current artificial
counterparts, we. propose a chemical sensing approach based
on optical microbead technology [4], [5]. Each microbead is
a cross-selective sensor, and thousands of microbeads can be
assembled into a single fiber-optic bundle. Thus, the response
of a microbead array is high dimensional, combinatorial, and
redundant, much like what is known about olfactory receptlon
163, [31.

Conventional pattern recognition techniques break down as
the dimensionality of the input space grows significantly beyond
the amount of training data. The olfactory system, on the other
hand, has been optimized over evolutionary time to make sense
of signals from millions of receptor neurons. Thus, biologically
inspired computational. models represent an attractive candi-
date for the processing of microbead array signals. Previously,
Pearce et al. [7] investigated the role of signal intégration on ar-
rays of optical microbeads, a mechanism that also takes place
in the olfactory systém when' receptor neurons converge onto
glomeruli. The authors showed that signal integration improves
the detection threshold by a factor of /n, where n is the number
of beads in the array. White et al. [8], [9] employed: a spiking
neuron model of the peripheral olfactory system to process sig-
nals from fiber-optic sensor array. In-their model, the response
of each sensor. was converted into a pattern of spikes across a
population of olfactory receptor neurons {ORNs), which then
projects to a unique mitral cell. Different odors produce unique
spatio-temporal activation patterns across mitral cells, which are
then discriminated with a.delay-line neural network (DLNN).
Thelr olfactory bulb—DLNN model:is. able to produce a decou—
pled odor code; odor quallty belng encoded by the’ spatxal ac-
tivity across umts and odor 1ntens1ty by the response latency of
the units. -

In this paper we extend a blologlcally mspn'ed model that
we proposed for temperature-modulated metal—omde sensors
[10] ‘The: model captures. the. followmg two stages in the ol-

'_ faotory pathway chemotopn: convergence of receptor neurons

1'536-437_}(@25.00 © 2007 IEEE



Fig. |. Scanning electron micrascope (SEMJ image of a ticrobéad array (1i-
lumina’s BeadArmym) Each bead has a diameter of 3 p1m, and protrudes out
of & well of similar diameter etched onto a ﬁber-optlc bundle

onto the olfactory bulb ‘and’ center on—off surround lateral in-
teractions, The first circuit performs dlmensmnahty reduction,

transforming the high-dimensional response into an’ orgamzed'
spatial pattern (i.e., an odor image): The second circuit reduces

the ‘overlap between these paiterns, increasing their discrimina-
tion at a later stage. The modél'is validated on an expenmental
dataset containing the'responses of a large array off rmcrobead
SEnSors (N = 586 sensors) to ﬁve dlfferent analytes

H OPTICAL MICROBEAD SENSOR ARRAYS

The microbead array technology used in this ‘research was
originally developed by Walt and colleagues at Tufts Universﬁy
[4], [5]. Typically, édch arrdy includes thousands of bead sen-
sors that are madé from various materials (e.g., Si'or PMMA)
that can be porous in order to increase surface areas: Beads are
arranged in wells etched on the solid surface in order to generate
an array of sensors, as illustrated in F1g 1. ' :

“The beads are functionalized using so!vatochromlc dyes ei-

ther adsorbed in the matrix of the microspheres, or covalently at-
‘tached to them. Solvatochromic dyes are known to display large
shifts in their fluorescence spectra with variations in'the polarity
of the surrounding medium, a property that is retained even after
the dyes are‘applied to'the beads. Unique sensors can be made
either by immobilizing the solvatochromic dyes int polymer ma-
trices that vary in polarity, hydro-phobicity, porosity, elasticity,
and swelling tendency, or by using different dyes with the same
mamx In this study, the former approach was used.’

~The size of each sensor is in the order of a few-micrometers
(3——5 pmi in this: study), so one can easily envision.a miniatar-
ized multisensor system. Illumina’s BeadArrayTM technology
allows us to build arrays that contain 50 000 or more fibers; with
micron-size cores in a 1.5-mm-diameter fiber-bundle. The cores
of the fibers.are etched on one side of the fiber bundle-using a
chemical method to a specific depth, while the cladding of each
fiber remains intact. This means that there exist: 50 000 micro-
wells at one end of the fiber bundle, which can be randomly
loaded with the functionalized. microspheres: nght excitation
and fluorescence collection from the fiber bundle is: dchleved in
avariety of ways;an example is ﬂlustrated in Fig 2

'. _ Fiber cladding —>}

. fluorescence is guided bac

miximiim response of the soivaiochromlc dy
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Total internal _r_ef_!_ection

4 Photon {out)

Photon (in)

Fluorescance

Excitation Emission

: Flg 2 The oplxcul ﬁher propeﬂy of. lotal miemal reﬁecnou is used 10 guxde

excitation light, 5cnerated at the proxtmal end of the fiber, towards a bead at
the distal end of the fiber: The dye on the bead is excited, and the generated
owirds the proximal end in order 10'be analyzed.

Fig. 3. Image of a, monochrome CCD camera_of the flugrescence pattern . of

an .u'my The'i mmﬂt_ was ﬁltered usirig ‘Ban ass optlcul ﬁEter matcherj lo the

Different methods have been, empl:oyed for fluorescence:de-
tection, such as a spatially distributed readout with a broadband
light excitation source, an integrated spectrometer detector, and
a hyperspectral imaging technigue whereby spatially distributed
signals are collected via a fast-changing eléctronically tunable
optical filter. In the latter case, a snapshot of the $pectra of each
individual sensor'in the array is recorded at each instant in time.
In this' study, the detector is'a charge-coupled device (CCD)
camera that can record (in a single image) the fluorescence pat-
tern of all beads; filtered with a'specific bandwidth optical filter
that matches thé: maximum response of the solvatochromic dye
uséd iii the sensors: Fig: 3 shows an example fuoréscence pat-
tern of a microbead array recorded using a monochrome CCD
camerd. The sélection: methodology used to'determine an appro-
priate bandpass filter is illustrated in Fig. 4.

The distribution of bead types in the fiber bundleis random,
as shown in Fig. 5. Hence, each array first needs to be decoded to
identify the position and type of each bead in‘the image. This is
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atlons ata parncular ﬂuorescence wavelength durmg an 1mage
sequence generates a unique temporal response pattern for each
bead: type, creating a “fingerprint” for each chemical sample.
Subsequent pattern recognition of the' bead army responses al-
lows ldennﬁcatron of the chemlcal i

HI EXPERIMENTAL SETUP

Expenmental data for tl‘lIS work was collected from a
benchtop system  usedat . Illimina. to. screen smgle Sensors
(spec:lﬁcrty and. sensrtwrty) analyze multlsensor array- data at
the mteractron of :various chemlcals - perform spectral studtes
and optimize .image - acquisition. A first-generation. compact
system has als_o_.been__developed_and tested specifically for the
petroleum industry. (ChevronTexaco). This portable device is
shoWn in Fig, 6, Various designs of a miniature detector. have
also-been. explored that could- be mteorated w1th a w1re1ess
network mfrastructure for chstnbuted sensmg apphcatlons

A Y?re Opncal Module

A block dlagram of the optlcal modulc in the benchtop system.
is shown in Figi: 7. The excitation light is generated:by 'a white

" TEEE SENSORS JOURNAL, VOL. 7, NO. 4, APRIL 200

03 i Fig: 6. - Portable; field deployablc chemical scnstng unit: :

li ght'source and filtered by a combination of interference band-
pass opkacal filters to, allow only. an optimized: excitation spec:
trum to-reach: the sensor. The excitation: light.is drrected n
typlcal epl-ﬁuorescence setup,. whereby beamsphtter 15 usec
to. both excite the sensor and also select:the emitted fluores-
cence. from the sensor.in a strarﬂ"ht path'to the CCD The CCL
isa coo]ecl VGA camera: (Cooke Corporation) with: 6 x 6 un
pzxel size and very. high quantum efficiency (QE) i in the wave:

lengths necessary for an optimum spectral shift.- A 20 x scien

tific grade objective (Olympus U-PLAN APO), optimized fo:
all wavelengths; is used to image the fiber-optic bundle. The
sensor is a fiber-optic-bundle etched and fitted with: approxi-
mately 50 000 bead sensors, However the ﬁeld of view of the
objective spans only a quarter of the full ﬁber—bundle surface 5¢

a reduced number of sensors in. the array can be 1mdged at any

point in time. . -

The mteractlon chamber was made out of Teﬂon (and/oz
PEEK depending on the chemlcals tested); and was designec
with-a goal .of ultra—low dead’ volume. The sensor was-fittec
vig n leak-tight ferrule onto the threads of.one of the ‘portt
of the chamber two addmonal ports were ‘used’ for delivery
and. exhaust, A fourth port, not used in this experiment, car
also be-used: for head-on, excntauon In-this alternative setup
ﬂuorescence is collected through the bundle rather than througk
epl—ﬂllorescencc making it advantageous. for a compact devict
wrth light—emmmg diode (LED) ﬂIummanon SOUICES. /5 "

B Vapm -Delwery Module

“The: vapor-delivery: module consists of latchrng solenmc

'valves a'micro-pump, and the mteractlon chamber that honse*

the sensor Teflon tubmg, as well ‘as appropriate: sample anc
purge gas. (air) filters; are used. The delivery. system can be

_'alternated between llqilid and gas: phases Two conﬁguratlom
are: available in-the gas phase: a calibration’ mode,; where
:system of syringes and solenoids and/or sampling bags is-used

and.a deteotion mode. The syringe/solenoid configuration i

'described in Flg 8 ‘N3 is sparged’ through the sample, so0 tha:

vapor builds upin the headspace:of the boftle until equlhbnu:r
is reached. A solénoid vilve (V1) oscillates between: headspace

- (V1 .closed) and the Ny gas’ (V1-open), while the: syringe-i
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" Inside Hood

Fig. 8. Sample delivery system use

asparatmg 10 capture thrs mrxture Then the synnge d1spenses,
creating a constant flow and concentration of the sample in the
carrier gas stream, and is contmuously released in the. hood
when the top left solenoid valve (V2) is at the normally—open
(NQ) position. At the same time, the sensor is purged with N2
by keeping the right solenoid (V3) at NO position, Following
purging, both V2 and. V3 are set to a closed position, allowing
the diluted sample to flow onto the sensor for a specified
amount of time {of the order of 1 to 6 s). Fmally, the: system
returns back to the Ng purgmg mrtzal condrtlon (V’) and Viat
NO position). : :

-'The systém was cahbrated usmg Iow flow. techmques and
Tedlar bags at very high dilution numbers. The resolution of the
system (i.e., minimum detectable difference in concentration) is
of the order of 1 to 5 ppm, depending on the solvent vapor. The
sensors with highest specificity (optimized) display a'limit of
detection (L.OD) in the order of 10 to 50 ppm, depending on the
solvent vapor tested under laboratory condmons

C Contml Elecrmmcs cmd. Dam Acqursmon - Ry

Cun‘ent!y, a. 1aptop computer controls. all the electromcs of
the optical system, as well as the.vapor delivery'system, and the
data acqmsmon Details of this system are to be pubhshed asa
separate paper in the near-future. - SR

Teflon tubing, TH6" 1D

‘Mass Flow Meter. . .

Notation .

d for calibration of the portable device.

D. Experimental Dataset

The expenmental dataset used in thrs study comprises of
transient responses of 586 mlerobead sensors to five analytes
toluene (TOL), ethyl alcohol (EA) acetone (ACE), ethyl hy-
droxide (Et-OH), and methy] ‘hydroxide (Me-OH) Fig. 9(a)
shows the transient response of 100 mlcrobead sensors to ace-
tone, whereas Fig. 9(b) shows the transmnt response of a single
microbead sensor to several presentations of each analyte, The
oclorant was mtroduced att = 14 s and removed att = 35 5.

IV COMPUTATIONAL MODELING

" The use of large arrays {hundreds to thousands of sensors)
opens the doors for alternative pattern recognition approaches.
The approach adopted in this study involves mimicking solu-
tions from the biological olfactory system [15]. Specifically, we
model two computational- functions: in the olfactory pathway:
chemotopic’convergence and ‘odor opponency, for processing
bead array responses. Details ‘of these: models are presented in
the following subsect;ons -

A Dzmenswnahty Rea’ucnon Thmugh Chemotop:c
CG?I\?E?‘gEMCE CoL L . L .
The projection from the olfactory eprthehum oo the olfac—

tory bulb is organized such that ORNs expressing the same re-
ceptor gene converge: onto: one. of ‘a few spherical structures.
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Fig. 9. (a) Response of 100 microbead sensors to acetone. The odor is intro-
duced at £ = 14 5 and removed at ¢ = 35 s. {b). Transient response of a single
mrcrobead 'iensor to sever'sl presentanons of each rmulyte .

_of neuropﬂ called glomeruh, where they synapse rrntral cell
_dendntes [161. Thls convergence transforms the initial combx—
_matorial code mto an’ orgamzed spatial pattem (ie, an olfac-
tory 1mage) whrch decouples odor Identlty from mtensrty [17}
In addition, massive convergence improves the srgnal -to-noise
ratio by mtegratmg sngnals frorn multlple receptor neurons [7],
(18]. 5

To model the ORN-glomerular coovergence we topologr—
cally cluster sensors that have similar selectivity using the self-
organizing. map. (SOM) of Kohonen [19] The selectnnty of a
bead Sensor 1s deﬁned as . '; :

Sel [RO‘ RO“ . ROC] - (D
where RO is’ the response of Sensor'é to odor O and G is the
number; of odorants. Once the SOM is tralned the response of
each SOM node can be computed as follows ' e

- Lareml Inferacna

- IEEE SENSORS JOURNAL, VOL. 7, NO. 4, APRIL 2G0

S where: N is the number of bead sensors and W;; = Lif senso
B i converges 'to' SOM node; J am:l z.ero otherwme a normahzatrm
constant: 21_1 Wijis used (0 ensure that drscnmmatory infor

mation is not overshadowed hy the common “mode response o

__the array [10] Note that' the SOM s used to cluster feature
S (bead sensors) rather than samples (as is conventronally done 11
'pattern recogmtron) Thus, each SOM: node G can be though
of as a SImulated glomerular unit, e

B Contmst Enhancement T]naugh C enter OM—O)jlr Surrozmd

The mmal odor ima .avarlabie at Ihe glomerular layer is fur

. ther transformed in the olfactory bulb (OB) by means of two dis
 tinct lateral mh]bltory circuits. Tlie first of these circuits, whicl

occurs: at the input of _the.OB, has been suggested to perforn
some. form of “volume control” to broaden the dynamic rang

of concentrations at which an odorant can be identified [20]
A computational model of this circuit has been previously de

scrlbed by us to achleve concentration normahzatron [21]. The

..second circuit occurs at the output of the OB. These circuit:
_have been recéntly found to have local excuatory (on~center
- and lonﬂ—range mhrbrtory (off—surround) connections, and have
been suggested to perform contrast enhancement of the spatla

pattems in the OB [22].
S We model this center on——off surround confrast-enhancemen
circnit w1th the well- estabhshed additive model from neurody

'namics {23 p 676}, _whose general form is, .

.:dvj(t) : vJ(t Moo
Ta T _f;val(t)) -6

' where U; 1s the actlvrty of mitral neuron i T is the time constan

that captures the dynamrcs of the neuron, Ly; is ‘the synaptic
weight between neurons /& and j, M’ is the number of neurons
and 1 is the external input in (2), properly scaled (I; = 10G§

in order to balance the contribution of sensors and lateral mputs
The nonlmear actlvatron (p ( ) 1s the lOgISth funcnon deﬁned b)

: ('O(U) l+exp( a1 (uj—eq))

'\'ehere”the conetahte 'al and aa are set to 0. 0392 and 74 985

respectrvely, to match the dynamic range of the 1nput signa
from microbead arrays.! To model center on—off surround, eact
neuron makes excitatory synapses to nearby units and ml‘ublEDl’)
synapses ‘with drstant umts as follows

R . _U{a;'h],' d(h J) < ‘/_ o
Ly = Ul-bal, A <d(k, 05 <WE )
| O: (kj)>2\/_ '

_where U [a, b] lS a umform drstrrbutron between o and ¢

(@ = 0, b = 1 1r1 thls study), d is the distance betweer

_unrts measured as ac Euclrdean drsteoce wrthm the latoce

3 Wi R
; GO: ’n‘."l il
Z Wu

J
i=]1"

| :_‘tz')_

1The value of these constants is’ problem dependént; but can be easily unec

- 50 that most wnits in the lattice operate in the neas-linear range of the sigmoidal

function; this ensures good sensitivity to changes in.the sensor response. Ar

S 'lnappmprmte cholce for Lhese values would oLherwrse lead to saturatlon of thes¢
iy umts : :
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" Fig. 10." Stulated glomerular maps for five andlytes, five ropetitions each, using a 20 . 20 SOM laitice and 586 microbead semsors.

= \/(7 o, ;rgwj) (colk —col; ) row and col being
the row and column coordinates of a neuron in the Iamce) and
r determines the reoepnve-ﬁeld width of the latéral connec-
tions, An’ appropmate lateral inhibition spread (r) is° selected
to prowde maximum odor separablhty, where separablhty 1s
measured as follows [74] '

iT(SB
tT_(SIV_)

where Sy and S are the within-class and between-class scatter
matrices, respectively [25].:For the dataset presented in Sec-
tion [I1-D, the maximum: for this separability measure was found
to.oceur at 7= 4.3-{cells or pixels). This receptive field width
will be used to quanufy the benefits: of the proposed model.

| J ©

V RESULTS

- 'We used the response of 586 microbeads to: the ﬁve analytes
(Section ITI-D) to train'a chemotopic convergence map with 400
nodes, arranged as a 20 x 20-1attice: The response of each sensor
to an odorant was the difference between the steady-state re-
sponse (£.= 34 s and baseline value (# =13 s:): Fig."10 shows
the resulting-odor maps for the five analytes five samples’ per
analyte. Only the first sample of each odor was used to train the
SOM; all remaining samples were used for validation purposes.
It can be observed that each analyte is encoded by a unique spa-
tial pattern’across the:SOM lattice;: and that these pattems are
highly repeatable across presentat;ons

~The outpiits of: the convergence model: were subsequentiy
input to the additive lateral inhibition model in (3). Fig.. LL:(top
row) shows the spatial patterns that result from sensory: con-
vergence at the input of the OB for one: vahdatlon sample of
each analyte.(i.e., Fig. 10; first column). These: spetml patterns
are highly overlapping due to the collinearity of the sensors.
Figi 11 (middie row) shows the: resultmg spatlal actlvmes fol-
lowing: stabilization of the center—surround iateral mteractlons

- Et=0H:. - Me-OH:

" SOM-

- Cenfer.
.- Surround

Fle il Spaml maps at the mpul (top row} unr! output (mlddle row) of the OB
model, The boitom row shows the four spdrse codmg re,ggons th’i[ emerﬂe s
result of the; ]'ueml interactions. - -

TOL leads to heavy activation on two highly: localized regions
(spatial code:12). EA and Et-OH, which generate similar sensor
response, prodice similar activation in regions 1,2, and:3-(spa-
tial code: 123).:ACE produces heavy:activation of region 4,5,
and:3:(spatial’ code: 345). Finally, Me-OH produces heavy. acti-
vation of regions-3 alone (spatial code: 3). Thus, the spatial pat-
terns after center-surround interactions are significantly sparser
than the chemotopio odor maps and prowde mcreased odor sep—
arability:: : :

- The spatlal patterns in F1g 11 capture mformatlon that 1is
available from-the steady-state: response of the model. ‘How-
ever, a'growing body ‘of evidence indicates that time and: dy-
namies. aré key to odor:information processing [18]; [26]: To
visualize their-role in the behavior of our model; the temporal
evolution of the 400-dimensional (20 x 20):system was ‘pro-
jected onto_ a three- dlmensmndl subspace by -means of prin-
cipal components analysis. Shown in: Fig: 12, trajectories’ for
each'odor originate at nearby locations in'state space; this ini-
tial state. corresponds to the highly overlapping spatial patterns
at the input of OB (i.e., those in Fig. 11, top row).:As a result
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A Companson With Statistical Technigues

“We, compared the pattern separability achieved by the pro-
poseci model against two statistical dimensionality-reduction
techmques that are widely used with chemical’ sensor- array
data: principal component analysis (PCA) and linear discrimi-
nant analys1s (LDA): [25} PCA'is an unsuperwsed method that
prowdes opumum reconstruction in’ the ' mean-squared-error
sense, whereas LDA is a sitpervised technique that provides op-
tinium separablhty for Gaussxan classes w1th equal covamance
énr_ices
CA was performed on the raw sensor data (586 dimensions),
Only the. first two PCA eigenvectors were preserved, which ac-
count. for 96 2% of the variance. LDA ‘was also performed on
the raw. sensor data; in this case, the four nonzero eigenvalues

“were preserved. Both statistical techniques provide good sep-

i ;_-aration“between odor classes, but lead to larger within-class

dataset. The mmai pomts in the tra_]ectones are the spanal maps at the

iy :
the OB network, shown in Fig. 11 (top row). Oder separability 1§ significantly”

improved as a result of Jateral inhibition,

of center 'onmoff—'sn'rrounci lateral connections, the: activity- for
each odor slowly moves’ away. from the initial location and set-
tes' into Ddﬂr-spemﬁc ﬁxed-p int attractors, which con‘esporad
to the, 1ocahzed spatial: pattems in Fig. 11 (mxddEe row). The re-
peatablhty of the odor trajectones is 111u5trated by. v1suahzmg all
Ewenty~ﬁve traj ectones (five samples pet analyte) in the dataset.
These results are’ ‘consistent with recent neurobmloglcal find-
ings in the insect antennal Iobe (analogous to' mammalian ol-
factory bulb), which shcw that odor-evoked spatiotemporal ac-
tivity evolves over time and converges mto oclor—spemﬁc aterac-
tors [26]. : :

Visual inspection of the steady—smte response in F1g 11 and
the transwnt trajectories in Fig, 12 clearly shows that the ]ateral
mhlbltory network increases the contrast between odors, To
quantify these benefits, we compared the separablhty measure
J'in (6) at the output of the model against the separability that
is available 1) from raw sensor datd, 2) following cliemotopic
convergence, and :3) at-the output of .an: OB network  with
randoim lateral connactions. The latter allows us-to separate the
role of center on—off:surround circuits from that of dynamics
alone. - Fig. 13 shows thé temporal’ evolution of the separability
J:for each of the four cases. Three repetitions. are ‘shown in
the:case-of random and center-surroind lateral connections to
illustrate: the' repeatability. of :results for different:(randomly
drawn) connection strengths. Chemotopic convergence alone
{J =:83) is able to improve odor separability compared to:that
available from the raw bead-array response (J = 60). Random
lateral: connections- appear to. improve discrimination: initially
(J ~:500 att =50 ms), but their steady-state performance is
on.average comparable to chemotopic convergence, In contrast;
discrimination for the model with center on—off surround lateral
connection: increases. monotonically. after an initial period (£ >
100 ms), reaching a- maximum in their steady-state response

(J:~:T700).: This . steady-state discrimination corresponds to .

the-fixed-point attractors:in Flg 12 and. the - spat;al maps in
Flg 1 (maddIe row) L S i

_“scatter than the neuromorpmc approach; e.g.,-note in. Fig. 12

that ‘the: network converges to a highly localized activity pat—
tern when exposed to multiple repetitions of the same odor. As

_..a result, the neuromorphic- model provides higher odor separa-

bility (J ) than PCA and LDA, as illustrated in Fig. 13. While
the extent to WhICh these results generalize to other datasets re-
quires further investigation, we believe that the 1mproved per-
formance of the neuromorphlc model is due to. the fact that it
does not requlre computation of i inverse scatter mamces -which
become problematlc when the dlmensmna]lty of the mput space
is larger than the number of semples in the dataset (e.g., 586 di-
mensions versus five samples per class, in our case) ThlS sug-
gests that the - neuromorphic model is partlcuiarly advantageous
in very-high-dimensional spaces a result that is consistent with
the oIfactory system.

VI SUMMARY

In thls paper We have: presented; a neuromorphlc approach
for sensor-based :machine: olfaction :that: combines: microbead
array- technology: with: a. model of signal’ processing: in the
olfactory;bulb.. Our, approach can: be summarized as. follows.
Polymeric microbeads with immobilized solvatochromic dyes
are randomly assembled in a fiber bundle to produce an array of
diverse sensors: Changes in polarity of the dyes’ Iocal environ-
ment induce characteristic shifts in their fluorescence spectrum,
w[ruch can. be momtored Imaglng of the mlcrobeads response
leads to a hlgh—dlrnensmnai signal, Wthh is. first processed
w1th a self-c -organizing model of chemotopic. convergence. The
coovergence “model. transforms the microbead array: response
into. an organized spatial ‘pattern (i.¢., an odor image)..Odor
images:formed: through convergence: are. however highly over:
lapping due to collinearity-of sensor input, and require further
processing. Hence, these odor maps are subsequently processed
using a lateral inhibitory circuit: with: center-surround. connec-
tions. These lateral interactions improve contrast between odor
images, producing sparse and more; orthogonal patterns “than
those available at:the input. . fati

At present, the steady—state response of the bead sensors fo
odorants_ls used as the input to,our model.:We are currently in-
vestigating the extent to which:information in the response tran-
s:ents can further i 1mprove separabxhty between similar odors

o (e g EA VErsus Et—OH} Spec1ﬁcally, one could modulate the
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_'seusors w:th a pulse train‘in the sampie concentrattou much
like what is observed w1th the breathing cycle of animals, “This
would lead to oscillatory. attractors. in the model. By matchlng
.the time constants of the model to those of the sensor transients,
the system could converge to limit cycles with higher discrim-
‘inatory ‘information than the fixed-point attractors in Fig. 12.
Further, this work has focused on pnmarlly dlscrlmmatmg pure
analytes at a single concentration. The next stage of our re-
search will investigate incorporation of gam—controi circuits in
the olfactory bulb to handle multiple concentrations {27], and
‘bulb-cortex interaction to perform nuxmre segmenianon and
buckgmund suppressmn [28] : :
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