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Abstract 
In this paper we describe our optically-based chemical 
detection system based on lllumina's Beadsrray'" Tech­
nology [1,2,3]. In this approach, unique bead sensors are 
fabricated by either adsorbing or covalently attaching 
fluorescent solvatochrornic dye molecules /0 the micro­
sphere matrix. The responses are generated bymeasuring 
intensity changes, spectral shift. and time-dependent varia­
tions associated with the fluorescent sensors. Analysis of 
the intensity variations at a particular bandwidth during 
an image sequencegenerates a unique temporal response 
patternfor each chemical based on changes in microenvi­
ronment ofthesensor. Patternrecognition software is then 
used to correlate the response pattern with the chemical 
being detected. 
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INTRODUCTION 
Illumina's chemical detection system uses cross-reactive 
optical sensor arrays based on IIIumina's BeadArray™ 
platform. 

Some of the unique characteristics of our optical chemical 
detection system include: 

•	 Compatibte with vapor (Opticat Nose) as well as liquid 
(Optical Tongue) detection. 

•	 Short sensor response times (milliseconds) for real­
timedetection. 

•	 The ability to incorporate a large number of distinct 
sensors for improved selectivity. 

•	 Inherent redundancy of individual sensors. 

•	 Easeof sensor andarray manufacturing. 

•	 Fiber size and photonics components are ideal for 
miniaturization 

•	 The sensors andthe electronics can be physically sepa­
rated to allow for the detection of flammable and/or 
toxic analytes 

Themain components of oursystemare
,;

1-	 Sensor chemistry andfabrication 

2~	 Instrumentation 

3-	 Data analysis module 

Sensor chemistry and fabrication 
The bead array is assembled on an optical imaging fiber 
bundle consisting of about 50,000 individual fibers in a 
hexagonally packed matrix. The ends of the bundles are 
polished: Subsequently, ooe end is chemically etched, so 
that a well is produced in each of-the 50,000 fibers. Then 
each well is loaded with a bead/sensor, which is approxi­
mately 5flm in diameter. This highly miniaturized array is 
about 1.5 mm total in diameter. The fiber-bundle separates 
the sample and the detection hardware and carries the fluo­
rescence signalbetween them. 

A	 B 

Fignre 1. A) Optical imaging fiber bundle, B) Bead 
arrav. 

Individuat sensor types are prepared in batches using 
fluorescent solvatochromic compounds in conjunction with 
solid phase organic techniques, high throughput and com­
binatorial approaches. 

Figure 2, Attachment of Nile Red to mlcrespheres 
via etherbond formation 
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High throughput approaches are particularly suitable for 
sensor development not only because selecting orthogonal 
sensors requires a large number of molecules, but also be­
cause of the need for repetitive and iterative cycles of 
synthesis and optimization [4]. Using this approach one 
can achieve selectivity. sensitivity and the desired stability 
for sensors. 
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Figure 3. Various sensor formats 

Sensors can be prepared either by adsorbing the dye of 
interest into the microsphere matrix or by covalently 
attaching the dye to the bead surface. One can then intro­
duce a variety of functional groups on the bead surface to 
alter the bead characteristics and the microenvironment that 
an analyte will experience when coming in contact with the 
bead. Sensors responses to analytes of interest and their 
behavior (stability, sensitivity and selectivity) are routinely 
measured using our bench-top optical nose instruments. 

Sensors are then pooled and loaded onto the fiber optics to 
generate the sensor array. 

Instrument design and development 
A basic diagram of the imaging system is shown in Figure 
4. A white light source is used as the excitation source for 
benchtop instruments due to its flexibility in wavelength 
and power selection. For the portable instrument lasers and 
LEDs were explored. The excitation light is filtered before 
it excites the sensor. The resulting fluorescence of the sen­
sors is transmitted back through the fiber, through either a 
bandpass or a tunable emission filter (Liquid Crystal Tun­
able Filter, LCTF) to the CCD camera where an image of 
the array is created. A series ofthese images is collected in 
time during an experiment allowing the fluorescence inten­
sity of the sensors to be monitored during the interaction 
with the sample vapor. 

Excitation
 
Sensor Filter
.. 

Interaction 20XObjec­
Chamber tive 

Figure 4. Basic diagram of the optical imaging system 

As mentioned above, Illumina's optical nose is a flexible 
system that can be miniaturized for a variety of applica­

tions. Part of our effort has been focused on developing a 
handheld prototype in collaboration with ChevronTexaco 
for applications in the petroleum industry. Fig. 5 shows a 
picture of the portable handheld device. In this design the 

excitation source is a compact optically-pumped Nd:YV04 
laser doubled in a KTP crystal. J:fie sensors are directly 
excited (from the bead side) while the compact CCD cap­
tures the fluorescence emission photons that travel through 
the fiber bundle. 

Figure 5. Portable handheld device 

The vapor delivery system consists of a latching solenoid 
valve, a micro-pump and the interaction chamber wherethe 
sensor is situated. Teflon tubing and appropriate sample 
and purge gas (air) filters can be used. 

Additional components such as LEDs for excitation and 
avalanche photodiode arrays for detection are currently 
under evaluation, with the goal of increasing sensitivity, 
compactness and reducing cost. Currently a laptop corn­
puter controls the electronics and acquires the data, which 
in tum are analyzed using Software written in LabVIEW 
and Matlab. " 

In addition to the bench top and handheld devices, we are 
also designing a miniaturized detection device with wire­
less capability that can transmit data to a central server. 
This device is planned for use in industrial process moni­
toring and homeland security in addition to other applica­
tions. 

Data analysis module and informatics 
The data collected from the CCD camera with purge gas or 
sample is a series of images, spaced in time. The image 
processing software locates the beads in each image, and 
follows their intensity values across the time sequence. 
From the time sequence of each bead, a series of features 
are extracted, using Principal Component Analysis (PCA) 
and Fuzzy Clustering (fig. 6). The resultant features and 
their corresponding class labels are then used in training a 
classifier system. The signals from unknown samples are 
passed through the trained classifier system, in order to 
obtain the appropriate class labels. We are also exploring 
more sophisticated analysis methods [5, 6] in order to in­
crease the selectivity of the device and give us the ability to 
detect components of mixtures. 
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ABSTRACT 

Sensor miniaturization and the drive to develop ultra compact 
chemicalsensingdevices have receivedmuch attention in recent 
years. The characteristics, nature,and quality ofsignats are 
inevitablyaffected as sensors reduce in size. We have developed 
micron-sizesensingelementsusing solvatochrornic compoundsand 
porous silica microspheres. Although many sensor clements, 
dependingon their chemistry,showstrong signals, a number of 
sensorsdemonstratesubstantialdrift and noise in their responses.The 
signals obtainedfromthese miniaturized sensors comprise three 
dominantcomponents: 1) the maincomponent,correspondingto the 
responseof the volatileof interest, 2) a piecewise linear trend, due to 
the deliverysystem and sensor recovery,and 3) a random noise 
component. While noise treatmentcan be done using many well­
known methods,e.g., Fourier-baseddigital filtering, the treatmentof 
the trend componentis rather difficult.Theobjective of this study is 
to reduce the effect of the undesirablecomponentsof the time 
response,i.e., noise and trend, in the presenceof weak signals. 
Trends are due to the non-stationary structureof the time-series 
signals, and the pulsatoryswitchingof the volatiles in a nose system. 
Ad hoc methodsof trend removalcause unsatisfactory results, by 
introducingsevere discontinuities. In recent years, wavelet transform 
has becomean invaluabletool for the treatmentof non-stationary 
signals. In this study, the detrendingand denoising is performed in 
one step, usingwavelet transform. It is illustratedthat for the optical­
nose (O-Nose)signals, this methodof preprocessingremovesthe 
original trend of the signals,while introducingno artificial 
aberrations. 

Keywords: WaveletTransform, Detrending, Dencising, Electronic 
Nose, OpticalNose. 

INTRODUCTION 

lUumina'schemicaldetectionsystemuses optical sensor arrays based 
on Illumina's BeadArrayTM platform [1-4}. The sensor array is 
assembledon an optical imagingfiber bundle. The ends of the 
bundles are polished.Subsequently, one end is chemicallyetched, so 
that a well is producedin each fiber. Then, each well is loadedwith a 
bead/sensor,five microns in diameter. This highly miniaturizedarray 
is approximately 1.5mm in total diameter.The fiber bundle separates 
the sample from the detectionhardware,and carries the fluorescent 
signal betweenthem. Individualsensor types are prepared in batches 
using fluorescent solvatochromic compoundsin conjunctionwith 
solid-phaseorganic techniques,high-throughput and combinatorial 
approaches [5]. 

Dependingon its chemistry,each bead can be consideredas a single 
sensor,or a single memberof a sensorfamily. Once exposed to an 
appropriatevolatile, and excitedwith the appropriate light source, the 
sensor may fluoresce; and the fluorescence intensityand wavelength 
will change as a function of chemicalenvironment. The fluorescent 
light is capturedby a CCDcamera, as a functionof time. 

Figure I illustratesa weak time-response,obtainedfrom a 
single bead sensor exposed to a very low concentrationofa 
certainvolatile gas. The drift in the excitation light source 
is comparablein size to the amplitude of the signal.The 
abscissa representsthe frame number. Each frame 
corresponds to one snapshot of the sensor signal on the 
CCD.The time separationbetween the frames is 100 msec. 
The ordinaterepresents the average of the pixel intensities 
in a 3x3 CCD grid, centered at the correspondingbead. 
This 3x3 grid is expectedto contain more than 90 % of the 
energycontained in the bead intensity. At t=0, the sensor is 
exposedto the referencegas (nitrogen). At t=2.5 seconds 
(Frame25), the sensor is exposed to the volatile gas of 
interest (herein referred to as the analyte), e.g., ethanol.At 
t=5 seconds(Frame 50), the analyte is removed and the 
sensor is, once again, exposed to the referencegas. The 
changeof the gas from nitrogen to the analyte and back to 
nitrogenis responsiblefor the pulsatory shape of the time 
response. The exact location of the break-points(rise and 
faU of the pulse), however, is not exactly known, as the 
time lag of the solenoidvalves, and the delay of the CCD· 
data readoutare not constant, i.e., they have stochastic 
deviationsassociatedwith them. 
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Figure 1: An exemplaryweak time-responseof a bead 
intensity. 

METHODS 

Figure2-top showsthe time response of four beads to four 
analytes. In addition to random noise, one common feature 
that is evident from these responses is the existenceof a 
piecewiselinear trend. The first and third patterns are 
referredto as positive responses,i.e., the exposure to the 
analyte of interestwill give a higher count than the 
exposureto the referencegas. The fourth signal is referred 
to as a negativeresponse. This means that the exposureto 
the analyteof interestwill give a lower count than the 
exposure to the referencegas. The second pattern is 
consideredzero response, i.e., it is indifferentto the 
exposureto the analyte of interestor the referencegas. 



Using conventional methods, the removal of the piecewise linear 
trend proves not to be a trivial task to perform, as the exact location 
of the break points cannot be readily identified. For instance, one 
may consider the ad hoc method of finding the break points by 
placing a threshold on the intensities, fitting a line or cubic spline to 
those points, and subtracting the resultant curve from the original 
one. In addition to the challenge of finding an appropriate threshold 
value, such methods are highly undesirable as they are likely to 
introduce artificial discontinuities in the signal. As was mentioned 
earlier, the location of these break points cannot be specified a priori, 
as the lag in the switching of the gases and the delay in the CCD data 
readout are not deterministic. Regardless of the involved difficulties, 
detrending is necessary before further analysis. 

In the field of signal processing, wavelet transform has proven to be 
an invaluable asset for the treatment of non-stationary signals [6-8]. 
One useful property of wavelets is having vanishing moments. A 
wavelet that has N vanishing moments can suppress the polynomials 
of degree N-I and lower. A piecewise linear trend manifests itself as 
a piecewise first degree polynomial. Therefore, a suitable wavelet of 
order two or higher can, in theory, remove the linear trend. 

Currently, a large library of wavelets is available. This library 
comprises the following wavelet families: Haar, Daubechies, 
Coiflets, Biorthogonal,Symlets, Meyer, Morlet, etc. Due to their 
linear phase, Biorthogonal wavelets are of high popularity in image 
and signal processing, and thus they were chosen in this study. The 
members of the Biorthogonal family include: 1.1, 1.3, 1.5,2.2,2.4, 
2.6,2.8,3.1,3.3,3.5,3.7,3.9,4.4,5.5, and 6.8, where the first digit 
identifies the order of the reconstructionwavelet function, and the 
second digit indicates the order of the decomposition wavelet 
function. Ofall the members of this family, Biorthogonal2.2 was 
selected for this study, as it has the smallest support among the ones 
with at least two vanishing moments. 

RESULTS 

A 6-level decomposition was devised [9], as it was experimentally 
shown that with this composition, the Approximate component at 
Level 6 (A6), corresponds to the piecewise linear trend in the signal. 
The trend removal objective could thus be achieved by discarding the 
A6 components, followed by a signal reconstruction. However, since 
the objective was to also remove the noise, the Detail coefficients 
(Di, i=I..6) were thresholded using the Hard Threshold method [9], 
before reconstruction. The results of the complete denoising and 
detrending of the four signals ofFigure 2-top are shown in Figure 2­
bottom 

The detrended signals are now suitable for the rest of the O-Nose 
processing. An example of such processing is ternary value 
assignment, i.e., labeling the responses as positive (Fig.2a,c), 
negative (Fig. 2d) or no-change (Fig. 2b). After applying the above 
detrending and denoising steps, this task becomes rather trivial. 

CONCLUSION 

In this study, it was demonstrated how wavelet analysis could be used 
for preprocessing the O-Nose signals. One prominent application of 
this preprocessing method is in the context of ternary label 
assignment to the O-Nose patterns. Lack of detrending and denoising 
can be detrimental for the task of ternary label assignment. 

One drawback of the wavelet-based preprocessing is the 
number of CPU cycles it consumes. In traditional signal 
filtering using Fourier analysis, the coefficients of the filter 
are predefined. For every signal, a simple convolution 
operation with the filter coefficients renders the processed 
signal. The wavelet processing, in contrast, requires the 
step of decomposition and reconstruction for every signal, 
and thus is much more elaborate. 

Biorthogonnlwavelet of order 2.2 was selected for this 
study~ This decision was made based on the linearity of 
phase, having a compact support, and being of order 2. This 
latter selection guarantees the suppression ofpolynomials 
of order 1 or lower. Since the trend was expected to be 
piecewise linear, suppression of the first degree 
polynomials was deemed sufficient. 
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Figure 2: Original signals (top) and detrended/denoised 
signals (bottom) 
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Abstract 

In IIIumina technology, the term bead is synonymous with micro-sensors 

used in optical arrays. Unlike orderly arranged micro-arrays [I, 2J, a 

randomly-assembled array would need to be processed via a so-called 

decoding step, in order to identify the location of each bead. In DNA­

related applications, the decoding step is done via multi-stage 

hybridization to the complementary oligonucleotides (a.k.a., oligos) [3-6J. 

In the field of optical nose (O-Nose) sensors, since the probes are not 

oligo-based, this method would mandate adding the DNA-based probes 

to each sensor. This paper introduces an alternate method to DNA-based 

decoding. The sensors are decoded by exposing the mixture of the 

sensors to a certain analyte or to a series of pre-selected analytes. More 

specifically, the time-course of the exposure of the sensors to nitrogen 

followed by the exposure to the specific analyte is obtained. By selecting 

an appropriate analyte, one can obtain different signatures from the 

different optical sensors. This idea is the main focus of the following 

study. In the more complex cases, the signature of the sensors may not 

be completely resolvable by a single analyte. In this case, the methods 

developed by this study are still applicable. However, one would need to 

perform a series of exposures to multiple analytes. At each stage of the 

series, the same procedure is executed. After the final stage, the 

individual results are pooled together, in order to make a composite 

decision. The major assumption for enabling the above claim is that even 

though each analyte, by itself, cannot break the complexity of the 

mixture, the combination of the carefully selected analytes would enable 



one to do so. The methods of this study are based on subspace 

classification. 

Introduction 

Most traditional electronic nose sensors are based on a small number of 

discrete sensors. lllumina's a-Nose technology is radically different from 

the electronic nose (E-Nose) technologies by several factors, e.g., the 

number of sensors. In an a-Nose application, one can easily obtain 2000 

usable sensors. The quantity of sensors, however, does come at a price, 

i.e., the necessity for a decoding procedure. Upon assembly, the beads 

(sensors) are randomly distributed on the array substrate. The process 

by which one would identify the location of each bead is referred to as 

decoding. The decoding step plays a challenging role in the a-Nose 

technology. In this paper, a novel method of decoding randornIy­

assembled arrays is introduced. This is based on subspace classifier 

method [7]. 

An alternate method of decoding such a problem is based on 

unsupervised learning [8J. In this method, the time-course signal is first 

compressed, and then processed using a clustering algorithm, e.g., Fuzzy 

C-Means (FCM). In general, since the supervised learning method can 

make use of class labels, its performance is expected to be superior to 

that of the unsupervised learning. 

Methods 

A method of supervised learning was devised for this problem. More 

specifically, three sets of data were provided along with their 

corresponding class labels. A fourth set, which contained the 

combination of the three bead types, was also provided. For this latter set 

of beads, no class label was provided. The objective of this study was to 



place labels (I, 2, or 3) on every bead of the fiber bundle containing the 

mixture of the three bead types. Figure I illustrates the prototype time­

course of the three bead types under test, along with the name of the 

compounds that the sensors are made of [81. 
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Figure 1: Class prototypes, Le., the projections onto the lust principal 

component of the class Luna (a), Plat-EPS (b), and Polystyrene (c). (Abscissa and 

ordinate represent the frame number (time) and bead intensity, respectively.) 

Figure 2 shows the profile of 49 randomly selected bead-types from the 

multi-bead-type fiber bundle, i.e., the fiber bundle containing the 

mixture of the beads. It is notable that not all of the bead-types follow the 

above general patterns, to a great degree. 
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Figure 2: A sample of the three bead-type mixture. Each time trace represents 

one bead-type in the mixture. 



For every bead-type, three features were extracted, one feature per class. 

These features were based on the normalized cross-correlation between 

the pattern of a bead-type and the class prototypes. The representation 

of the bead-type in this N-dimensional space (N~3) is projected into the 

N-2 = 1-dimensional subspaces. In each subspace, a negative label is 

assigned to the bead-type, if it falls on the negative side of the subspace. 

For instance, consider the projection into the subspace spanned by X3. 

In this case, if a bead-type's projection falls on the negative side of the X3 

axis, the bead-type is labeled as "not belonging to Class 3." If the 

projection falls into the positive side, no label is assigned. This process is 

repeated for all the other possible subspaces. At the end of this process, 

the partial (negative) calls are combined, and a composite call is 

deduced. For example, if the bead-type does not belong to X3 and does 

not belong to X2, then by deduction it has to belong to UoD - {X2, X3} = 

Xl, where UoD is the Universe of Discourse. Occasionally, a bead-type 

may not have enough negative calls to satisfy a unique deductive 

solution. In that case, the bead-type would receive a no-call label. 

In an attempt to rank the quality of the decoded beads, a score was 

assigned to each decoded bead-type. This score was a function of the 

Mahalanobis distance of the bead to (the other members of) its assigned 

class. The raw Mahalanobis distances were processed via sigmoidal 

functions, in order to transform the distances to scores, bounded in [0,1]. 

The sigmoidal function was designed such that at Mahalanobis distances 

of 3 and 10, the scores were approximately 1 and 0, respectively. These 

numbers were selected based on the heuristic assumptions that for a 

normal distribution, a Z-distance of 3 contains more than 99% of the 

data, and data points with Z-distance of 10 or higher can be labeled as 

outliers [9]. 



Results 

Figure 3 shows the 3-D representation of the individual bead-types, i.e., 

three fiber bundles, each containing only one bead type. Components of 

each dot (bead) on x, y, and z axes correspond to the projection of the 

bead time-response onto the first principal component of Class 1, Class2 

and Class3, respectively. 
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Figure 3: Bead labeling, based on training separate classes. Each,symbol/shade. _ 

represents one labeled class. X, Y, and Z axes represent the projection of the 

bead's time-response onto the first principal component of Classes 1,2, and 3, 

respectively. 

Figure 4 corresponds to the multi-bead bundle. This fiber bundle 

contains beads from all the three types. This is obvious from the span of 

the values. 



Figure 4: The multi-bead bundle projections. The plot represents the mixture of 

three bead-types. X, Y, and Z axes represent the projection of the bead's time­

response onto the rust principal component of Classes 1, 2, and 3, respectively. 

Figure 5 shows the results of the multi-bead-type fiber bundle after 

decoding. The resemblance of this figure to Figure 3 provides a visual 

confirmation on the quality of the decoding. The classes, however, are 

not completely separated, i.e., there is no significant gap between the 

classes. This can be partially attributed to the fact that sensor responses 

are not always pure, i.e., they do not always belong to one of the three 

classes. Some sensors may fail to respond properly, as it is evident in 

Figure 2. 



Figure 5: Bead labeling using supervised learning. X, Y, and Z axes represent the 

projection of the bead's clme-respcnse onto the rust principal component of 

Classes 1, 2, and 3, respectively. 

Figure 6 shows the beads of the three classes of the multi-bead fiber 

bundle, with scores greater than the arbitrary threshold of 0.7 (all shown 

in red). The rest of the beads are shown in green. 
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Figure 6: Points with score greater than 0.7. X, Y, and Z axes represent the 

projection of the bead's ttme-response onto the first principal component of 

Classes 1, 2, and 3, respectively. 

Given the arbitrary threshold of 0.7 on the scores, one can bin the high­

quality beads into three classes, as shown in Table 1. 

Sensor Total beads decoded Acceptable beads 

Luna 212 168 

PlatEPS 557 453 

Polystyrene 473 367 

Total 1240 988 

Table 1: The number of hfgh-qualtty beads (score> 0.7) In different classes 

According to Table 1, approximately 80% of the beads were decoded 

(988/1240 = 0.8) with Score> 0.70. The resultant decoded beads were 

visually confirmed for accuracy of the calls. The decode efficiency (DE) of 

80% is to contrast with the 10 % DE achieved by an unsupervised 

learning method [8J. 



Conclusion 

Supervised learning results in higher decoding efficiency (80 %) in the 

prediction of the unknown classes, as compared with an unsupervised 

learning method (which resulted in 10 % decoding efficiency). The 

supervised learning is also less sensitive to the number of elements in 

each class. In particular, it is less sensitive than the unsupervised 

learning to the imbalance in the number of items in clusters. This is 

mainly due to the fact that in supervised learning, one can exploit the 

domain-specific prior knowledge. 
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