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II, HISTORY

cover.) Apparently not, and the precise definition is probably not as important as
the fact that the novel techniques are being widely accepted and applied as ueeded
for a variety of projects, startiug from fiudiug new drug candidates and ending in
discovery of newinorganic materials.

Maybe the best introduction to combinatorial chemistry is through its brief history.
In 1959, the young chemist Bruce Merrifield, had the idea that it would be
extremely beneficial to modify the sometimes unpredictable behavior of growing
peptide chain intermediates by attaching the chain to the polymeric matrix, the
properties of which would be very uniform from step to step [2-5]. His invention
of solid-phase synthesis, for which he was awarded the Nobel Prize [4], changed
the field of peptide synthesis dramatically. Synthesis of oligonucleotides followed
immediately [6]; however, solid-phase syuthesis oforganic molecules was pursued
basically only in the laboratory of Professor Leznoff [7,8]. Even though solid
phase syuthesis was more or less accepted in the chemical community, it took
another 20 years before the new ways of thinking about generation of a multitude
of compounds for biological screening brought combinatorial chemistry to life.
Pressure from biologists motivated the development of combinatorial chemistry.
Chemists could not keep up with the demand for the new chemical entities. Big
pharmaceutical companies started to screen their entire collections of chemical
compounds against new targets, and the rate at which these collections grew
seemed unsatisfactory. Ronald Frank in Germany [9], Richard Houghten in Cali
forniaj l O], and Mario Geysen in Australia [11] devised ways to make hundreds of
peptides or oligonucleotides simultaneously by segmenting the synthetic sub
strate-solid support. Frank used cellulose paper as the support for the synthesis of
oligonucleotides. Cutting the circles of the paper and reshuffling the labeled cir
cles for each cycle of the coupling was a very simple way to generate hundreds of
oligos. Houghten enclosed classical polystyrene beaded resin in polypropylene
mesh bags, later called "tea-bags" or "T-bags," and used them for parallel synthe
sis of hundreds ofpeptides. The principle was the sarne: combine the bags intended
for coupling the sarne amino acid and resort the bags after each cycle of coupling.
Geysen used functionalized polypropylene pins arranged in the fixed grid. Each
pin was then immersed in a solution of activated amino acid pipetted into the indi
vidual wells of microtiter plate. Pins were not resorted after each step, but the com
mon steps of the synthesis (washing, deprotection) were done by introduction of
the pins into the bath containing appropriate solvent. These techniques cleared the
way for the arrival of real combinatorial techniques .applied to general organic
chemistry and not only to the specific arena of peptides and oligonucleotides.
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For biologists and biochemists, working with mixtures was absolutely nat
ural-well, it was natural also for natural products chemists-however, organic
chemists were (and stilI are) horrified when mixtures were mentioned. Therefore,
development of specific binders selected from the astronomically complex mix
tures of RNA by selective binding and amplification of selected molecules by
polymerase chain reaction (PCR) was accepted enthusiastically, and papers
describing it were published in Science [12] and Nature [13,14]. (Larry Gold and
his colleagues were adventurous enough to build a company around this technol
ogy-NeXstar-now merged with Gilead, in Colorado.) Relatively fast accep
tance was given to the techniques generating specific peptides on the surface of the
phage, panning for the binding sequences and amplification of the phage [15,16],
described by Smith. Again, the approach was basically biological. However, ear
lier attempts to publish papers describing the use of synthetic peptide mixtures for
determination of epitopes in Nature were unsuccessful; the world was not ready
for chemical mixtures. Geysen's seminal paper was eventually published in Mol
ecular Immunology [17] and did not find a large audience. In this paper the mix
ture of amino acids was used for the coupling at the defined positions, thus gener
ating large mixtures of peptides. Mixtures showing significant binding were
"deconvoluted" in several steps to define the relevant binding peptide sequence at
the end.

The pioneer in development of the methods for creating the equal mixtures
(of peptides) was Arpad Furka in Hungary. His method of "portioning-mixing"
was invented in 1982 (http://szerves.chem.elte.hu/Furka/index.html) and pre
sented as posters in 1988 and 1989 [18,19]. The method was not noticed until
1991, when it was reinvented and published in Nature by two independent groups,
Lam et al. in Arizona ("split-and-mix" method) [20] and Houghten et aI. in Cali
fornia ("divide-coupl~-recombine" method) [21]. Technology of deconvolution
of mixtures was the basis of formation of Houghten Pharmaceuticals, Inc., later
renamed Trega Biosciences, Inc. (Leon, Germany). Finding the active molecule
requires synthesis of the second (and third, and fourth etc.) generation mixtures of
lower complexity based on the activity evaluation of the most active mixture from
the first round of screening. An alternative method is positional scanning in which
mixtures of the same complexity with defined building blocks in all positions of
the sequence are screened and the importance of individual blocks is ascertained.
The combinations of all "important" residues are then assembled in the possible
"candidate sequences," which are then tested individually [22]. The use of mix
ture-based libraries was reviewed recently [23].

Portioning-mixing (split-and-mix, divide-couple-recombine) is a simple but
powerful method that not only allows generation of equimolar mixtures of com
pounds but is also the basis ofone-bead-one-compouru:ltechnology for the screen
ing of individual compounds (as recognized by Lam [20,24,25]). In this modifica-



III. SMALL ORGANIC MOLECULES

tion, the synthetic compounds are not cleaved from the resinous bead, and binding
is evaluated by assay performed directly on the bead. The structure of a compound
residing on positively reacting bead is then established by direct methods or by
reading "the code" associated with that particular bead. The one-bead-one-com
pound technique can be modified for the release of the compound to solution [26],
or to semisolid media [27], to allow for the use ofassays not compatible with solid
phase limitation. Again, this technology jump-started the first combinatorial chem
istry company, Selectide Corporation, in Tucson, Arizona (now part of Aventis).

Libraries of peptides and oligonucleotides were relatively easy to handle both in
the mixture and in the individual one-bead-one-compound format. Determination
of structure of peptide and/or oligonucleotide is made relatively easy by sequenc
ing requiring picomolar or even lower amounts of material. At the same time syn
thetic methodologies for their synthesis are well developed. However, a good can
didate for new successful drug is being sought between "small organic molecules."
Libraries containing nonoligomeric organic compounds were obviously the next
step in the development of combinatorial chemistry. Jonathan Ellman recognized
this need and developed a method for solid-phase parallel synthesis of benzodi
azepines [28]. His publication, together with published results from Parke-Davis
[29] and Chiron [30,31], started a flood of communications about application of
solid-phase synthesis to preparation of enormous numbers of different categories
of organic compounds, with the major focus on heterocyclic molecules. (Numer
ous compilations of solid-phase syntheses were published; see, for example,
[32-35], and a dynamic database of all relevant publications is available on the
Internet (http://www.5z.com/divinfo).).

Transformation of one-bead-one-compound libraries to the arena of small
organic molecules requires methods allowing simple and unequivocal determina
tion of the structure from the individual bead containing picomolar amounts of
analyzable material. This problem was addressed by inclusion of "tagging" into
the synthetic scheme [36-39]. The structure of the relevant molecule is deter
mined by reading the "tag." The most elegant method for tagging was developed
by Clark Still [37]. Again, as a rnle in this field, the result was formation of a new
company, Pharmacopeia. In this method, the tagging of the organic molecule is
achieved by a relatively small set of halogenated ethers attached to the bead as a
defined mixture in each step of the synthesis, forming digital code (each molecule
of the tagging substance is either present-digit l-or absent-digit 0), evaluated
after detachment from the bead by gas chromatography.

It did not take long before the combinatorial techniques were applied to
material science [40-44]. These libraries are produced usually in a spatially
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addressable fonn and were used to find new supraconductive, photoluminescent,
ormagnetoresistive materials.

IV. SYNTHETIC TECHNIQUES

Although the pressure to produce more compounds was visibly coming from phar
maceutical companies, most of the new techniques were developed at academic
institutions. Big companies still did not embrace the new techniques possihly due
to the fact that they are quite simple and inexpensive to implement. Pharmaceuti
cal companies do notwant simplesolutions; theywouldrather investin enormous
automation projects. In the end the managers are judged by the budget they were
able to invest, and a big room full of robotic synthesizers definitely looks impres
sive. Another major factor is the "visibility" of the compound produced. Produc
tion of 100 nmoles of the compound (about 50~g of an average organic com
pound), which can make 100 ml of I /.1M solution (enough for 1000 biological
assays), is unacceptable-simply because it is not "visible." Companies usually
require 5-50 mg of the compound (more than enough for I million assays) just to
"have it on the shelf." And techniques providing 100 nmoles are definitely cheaper
and require less automation than techniques needed to make milligram quantities
of the compound.

A very elegant technique for synthesizing numerous organic compounds in
parallel was introduced by Irori in San Diego. This company was based on the idea
that it is possible to label individual polymeric beads with the readable radiofre
quency tag, which will be built during the split-and-mix synthesis of any type of
molecule. Even though this very ambitious goal has not yet been achieved. the
technique of "Microkans"-small containers made from polymeric mesh material
containing inside beads used for solid phase synthesis together with radiofre
quency tag [45,46]-is used in numerous laboratories [47]. The most recent incar
nation of this technique (based on the original principle of "tea-bag" synthesis of
Houghten [10]), is the labeling of small disks containing 2-10 mg of synthetic
substrate, called "NanoKans," by a two-dimensional bar code on a small ceramic
chip [48].

On the other hand, thousands of compounds can be synthesized relatively
inexpensively in polypropylene micro titer plates using either "surface suction"
[49] or "tilted centrifugation" [50]. However, nothing can be more economical and
versatile for synthesis of up to couple of hundred compounds than disposable
polypropylene syringes equipped with polypropylene frits, as introduced by Krch
nak [51]. A syringe is charged with the solid support of choice, and all steps of the
synthesis are performed by aspirating appropriate reagents using needles and (if
needed) septum-closed bottles. The operation of syringes can be simplified by the
use of domino blocks [52].
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V. PHILOSOPHY AND CRITERIA

The different approaches to the synthesis of libraries illustrate the different
philosophies of laboratories and companies. The same difference in thinking can
be found in the value given to the purity of prepared compounds. Different com
panies apply different criteria. However, in the end you will always hear: "We do
not accept anything worse than 80 (75,85,70)% purity." Well, what purity is being
talked about? High-performance liquid chromatography with ultraviolet detector?
All compounds would have to have the same absorbtion coefficient. Or evapora
tive light-scattering (ELS) detector? Slightly better. Or mass spectroscopic (MS)
purity? There is nothing like MS purity! Maybe nuclear magnetic resonance
(NMR), but who can evaluate several hundreds or thousands ofNMR spectra each
day? Anyway, what does this number tell you? Only a rough approximation of
how many potentially good leads you will miss by not looking at the samples at
all. The only really important information that the chemist should provide to the
biologist is whether he or she can guarantee the preparation of the sarne sample
tomorrow or a year from now. Does he or she have the stable, well-rehearsed pro
tocol and reliable source of starting materials? If yes, every biologist should be
happy to screen his or her compounds. If the biological activity is found in the
impure sample, the likelihood that the active component of the mixture can be
found after isolation of all components is pretty high. By the way, the probability
that the activity is higher than observed in the mixture is also high. And, as a free
bonus, the active species might not be the one that was targeted but rather the side
product of unexpected (and hopefully novel) structure. This would make the
patent people happy. For a long time I did not meet a combinatorial chemist who
did not have a story abont active compound being a side product.

We could go on discussing combinatorial chemistry, but because this text is
intended to be an introduction to the history ofthe fields, we will stop here and refer
readers to the published literature. The histories and personal recollections of the
pioneers in this field were compiled in the inaugural issue of Journal ofCombina
torial Chemistry [53], and a similar format was used for a history of solid-supported
synthesis [54,55]. In addition to books on the subject of combinatorial chemistry
and solid-phase synthesis [56-74], we recommend attendance at biannual syrn
posia on solid-phase synthesis and combinatorial techniques [75], organized by
Roger Epton. Reading of recent review articles [32-35,76-88] is also helpful. We
also direct readers to the Internet site compiling all papers published in this excit
ing and rapidly growing field, which can be found at http://www.5z.com/divinjo.
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