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Summary

In an attempt to prepare 7-substituted 3,4-dihydroisoquinolinone family of compounds, we observed an unexpected
decarboxylation. The reaction of 4-nitrohomophthalic anhydride with a Schiff base formed on solid support leads to
the formation of core structure. LC-MS and 1H NMR analysis confirmed the structure of unexpected intermediate.
A library of 38,400 compounds was produced using this new synthetic approach.

Solid-phase combinatorial chemistry has become a
powerful tool for rapid generation of a large number of
organic compounds, which can speed up the process
of both lead discovery and lead optimization in the
pharmaceutical industry. As a result, any solid-phase
synthesis, which can lead to the preparation of po-
tentially biologically active small molecules, is being
heavily investigated [1–3].

3,4-Dihydroisoquinolinone is a general motif (Fig-
ure 1, I and II) within many biologically active com-
pounds [4–7]. It can also be found as a substructure
in the more complex systems [8–9] or as a reaction
intermediate [10].

The reaction of imine with cyclic anhydride has
been used for the synthesis of pyrrolidines, piperidines
and isoquinolines [11]. In 1996, Griffith et al. trans-
ferred this reaction to the solid phase and by fur-
ther derivatization on 4-carboxy substituent, a library
of 2,3,4-trisubstituted 3,4-dihydroisoquinolinones was
synthesized [12]. Two alternative approaches to auto-
mated synthesis of this class of heterocycles was
published recently [13]. The general structure of this
series of compounds is shown in Figure 1 (I).
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To increase the molecular diversity of this library
and to study the effect on reactivity of various build-
ing blocks, we initiated an experiment in which the
synthesis of 3,4-dihydroisoquinolinones was carried
out using a micro-plate as reaction vessel (Figure 2)
[14]. The reaction sequence is illustrated in Scheme 1.
Tentagel-NH2 resin with a Rink linker was chosen
because of its chemical stability to the conditions
used in this synthesis. We employed four different
amino acids in Step 1, Fmoc-2-aminoethanoic acid
(1a), Fmoc-5-aminopentanoic acid (1b), Fmoc-trans-
4-(aminomethyl) cyclohexanecarboxylic acid (1c),
and Fmoc-4-(aminomethyl)benzoic acid (1d), re-
spectively. The acids were separately attached onto
Tentagel-NH2 resin using normal peptide coupling
conditions (DIC/HOBT/DIEA) in dimethylformam-
ide. The complete coupling with each amino acid
was confirmed by indicator bromophenol blue [15].
The Fmoc-protecting group was then removed by
treatment with 50% piperidine in dimethylformam-
ide for 2 h at room temperature to give III. Resin
bound amines III were then condensed with 8 dif-
ferent aldehydes (2a–2h) in dimethylformamide in
the presence of dehydrating agent trimethyl ortho-
formate (TMOF) to provide imines IV. After wash-
ing with dimethylformamide (3x), further reaction
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Figure 1. General structure of 2,3,4-trisubstituted 3,4-dihydroisoquinolinone (I) and 2,3,7-trisubstituted 3,4-dihydroisoquinolinone (II).

Scheme 1. Reaction sequence for preparation of 2,3,4-trisubstituted 3,4-dihydroisoquinolinones.

with 3 different homophthalic anhydrides (3a: 4-
methoxy; 3b: 4-nitro; 3c: 4-chloro) was carried out
in dimethylformamide at room temperature to provide
isoquinoline V. To monitor the reaction sequence up
to this point, small amounts of 96 intermediates were
cleaved from the resin using TFA/H2O (95/5) and
analyzed using LC-MS. The results are shown in

Figure 3. The resin was then mixed by row and
evenly split into each vial by row and then activ-
ated by the treatment with O-(7-azabenzotriazol-1-
yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
(HATU). Twelve different amines (4a–4l) were de-
livered into the corresponding row and let to react
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Figure 2. Array of building blocks. Aldehydes were distributed by the rows (A–H), amino acids by columns (three columns per amino acid,
e.g. 1,3,5), anhydrides by columns (four columns specified in the figure), amines by the columns (1–12).

overnight. The final compounds were cleaved from the
resin using TFA/H2O (95/5) and analyzed by LC-MS.

The analysis of intermediates revealed unexpected
results. All samples derived from acetaldehyde (2a)
and pyrrole 2-carboxaldehyde (2h) did not provide
a single product. Among the additional 72 com-
pounds, all with 4-methoxyhomophthalic anhydride
and 4-chlorohomophthalic anhydride gave the expec-
ted product with 4-carboxy substituent as a single

compound. Separation of diastereomers was usually
observed due to the presence of two chiral centers in
the molecules (two examples are shown in Figures 4A
and B). The reactions with 4-nitrohomophthalic an-
hydride provided single compounds, with 44 less in
the molecular weight than the expected 4-carboxy sub-
stituted ones, and no separation of diastereomers was
observed (one example is shown in Figure 4C). It can
be explained by 4-decarboxylation due to the pres-
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Figure 3. The LC-MS analytical results of the intermediates. ‘?’ represents that a mixture of products was obtained; ‘OK’ represents that the
peak of desired product was obtained; ‘–(+)number’ represents that single compounds with certain number less (more) in the molecular weight
than the expected 4-carboxy substituted ones were obtained.

ence of 4-nitro substitution stabilizing the formation of
phenylmethyl anion. Among the most compounds in
which glycine was used as a building block, although
the ‘N+1’ peak was observed, the ‘N+1–17’ peak is
predominant, which can be attributed to the loss of
NH3 in glycine amide part under current ionization
condition.

Further indirect evidence of decarboxylation was
provided by the analytical results of final products
VI. All compounds with 4-methoxyhomophthalic an-
hydride and 4-chlorohomophthalic anhydride, except
those with acetaldehyde and pyrrole 2-carboxaldehyde,
gave desired amide products with corresponding
amines. All intermediates with 4-nitrohomophthalic
anhydride were not changed after the condensation.

Structure of 2-(7-nitro-1-oxo-3-phenyl-2,3,4-di-
hydroisoquinolyl) ethanamide as a product of solid-
phase reaction (Tentagel-NH2 resin) using glycine,
benzaldehyde and 4-nitrohomophthalic anhydride as
building blocks was proven by mass spectroscopy and
NMR spectrum analysis.

Previous studies suggested that the presence of
electron-deficient substituent on the phenyl ring is

able to stabilize the formation of phenylmethyl anion,
which leads to the decarboxylation of phenylacetic
acid [16–17]. So it is reasonable to assume that we
stimulated the 4-decarboxylation in I by using 4-
nitro substituted homophthalic anhydrides. This de-
carboxylation might happen before or after the ring
closure reaction.

To form a third site for diversity, we reduced
the nitro group to amino group by Tin (II) chloride
and acceptably pure compound was obtained (Fig-
ure 4D), in this case, MBHA resin was chosen because
of its chemical stability to the reduction condition
[18]. Then a set of carboxylic acids was used to re-
act with the 7-amino group to give amide products,
which can be obtained after anhydrous hydrogen flu-
oride cleavage [19]. Consequently, an efficient route
for the solid-phase synthesis of 2,3,7-trisubstituted
3,4-dihydroisoquinolinones (Figure 1, II) through 4-
decarboxylation has been developed, which has 2
diversity sites in the 2-piperidinone part of I and a new
one on the phenyl ring.



157

Figure 4. Examples of LC-MS results.

The scheme of library production is shown in
Scheme 2. The list of building blocks is provided in
Table 1 [20].

We applied a combination of ‘tea-bags’ and stand-
ard deep-well polypropylene microtiter plates in our
parallel synthesis [13]. In this technology, most steps
of synthesis are carried out in the small packages of
resin encapsulated in the polypropylene mesh or so-
called ‘teabags’. Until the last step, the resin from
the ‘bags’ which have satisfactory purity of interme-
diates is transferred to microtiter plates. Reaction is
then carried out using a highly automated method.

As shown in Scheme 2, resin in ‘teabags’ was
first coupled with bromoacetic acid, followed by 25
different primary amines and then 2 different amino
acids to give intermediate III (Table 1). The whole
peptoid part in intermediate III worked as R1 build-
ing block. After deprotection of Fmoc group, con-
densation with 16 different aldehydes (Table 1) and
further reaction with 4-nitrohomophthalic anhydride
gave isoquinoline intermediates V. At this stage, a
comprehensive QC analysis for intermediates was car-
ried out. A small amount of resin was sampled out
of each intermediate teabag and placed in a well of
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Scheme 2. The production route for library of 2,3,7-trisubstituted 3,4-dihydroisoquinolinones.

a microtiter plate separately. All the intermediates
were reduced by tin (II) chloride solution and acyl-
ated with benzoic acids using HATU as activating
reagent. The final products were cleaved from the
resin using gaseous hydrogen fluoride and analyzed
using LC-MS. The intermediates that gave the corres-
ponding final product with >85% purity were carried
on to the next production step. In our case, 720 of
800 intermediates passed this QC criterion. As an ex-
ample, the LC chromatograms of 25 final compounds,
which has 25 different amines and β-Ala as building
block 1, 2-pyridinecarboxaldehyde as building block
2 and benzoic acid as building block 3, are shown in
Figure 5.

After reduction, resin was evenly distributed as
slurry into individual wells of microtiter plates, in
which the incorporation of 48 different carboxylic
acids took place. The final compounds were obtained
in the ‘one well, one compound’ format after cleavage
by gaseous hydrogen fluoride.

There are two QC criteria for every reaction plate.
First, to make sure the purity of final products, we
analyzed 12.5% of samples by using ELSD-HPLC
(Evaporative Light Scattering Detection); their aver-

age purity must be over 75% to meet the requirement.
Second, every sample was analyzed by SCIEX MS
through direct injection to make sure that we get the
expected compounds, 75% of samples must have the
peak of desired product and the intensity of ‘N+1’
peak must be over 10%. Only the plates, which
meet both requirements, can be considered as passing
plates. In our case, 328 out of 350 reaction plates met
both criteria. As an example, the LC traces of 48 final
compounds, which has 3-(aminomethyl)pyridine and
β-Ala as building block 1, 2-pyridinecarboxaldehyde
as building block 2 and 48 carboxylic acids as building
block 3, is shown in Figure 6.

In summary, an efficient route for the solid-
phase synthesis of 2,3,7-trisubstituted 3,4-dihydro-
isoquinolinones through 4-decarboxylation has been
developed. This route allows to bring together
three different types of building blocks to construct
a 2,3,7-trisubstituted 3,4-dihydroisoquinolinone tem-
plate with a set of diverse substituents at various pos-
itions. A library of 38,400 compounds derived from
50 R1s, 16 aldehydes (R2) and 48 carboxylic acids
(R3) has been produced. After final QC, about 82%
of compounds met the QC requirement.
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Figure 5. The LC traces of 25 final compounds, which has 25 different amines and β-Ala as building block 1, 2-pyridinecarboxaldehyde as
building block 2 and benzoic acid as building block 3.
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Figure 6. LC traces of 48 final compounds with 3-(aminomethyl)pyridine and β-Ala as building block 1, 2-Pyridinecarboxaldehyde as building
block 2 and 48 carboxylic acids as building block 3.
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