Small changes in the molecules of the oxytocin and vasopressin synthetic analogs bring about considerable changes in their polarographic behavior within the entire potential interval available (+0.5 to −2.0 V vs sce). In the study of the polarographic activity of ten peptides we used classical, differential pulse and alternating current polarography and cyclic voltammetry. Liquid chromatographic separation studies of the peptides on the reverse phase complemented the electrochemical investigation. Hydrophobicity showed to be the parameter which decisively influences the polarographic behavior of the studied peptides. Strong interaction of the SS and S-carba analogs with the electrode material (mercury) has been observed and surface activity of the SH-forms of the peptides at negative potentials has been confirmed. The importance of various functional groups in the peptide molecule for the catalytic activity in hydrogen evolution at negative potentials is discussed.

The natural neurohypophyseal hormones oxytocin and vasopressin and their synthetic analogs have been subjects of intensive studies for decades. Results of these studies were recently summarized and extensively discussed in a monograph. Besides the biological activity and synthesis, considerable effort is also being devoted to the investigation of many other properties of these peptides, in particular, to their physico-chemical characteristics. The main reason for it is the effort to establish a ground on basis of which it would be possible to predict biological activity of various synthetic analogs, the ultimate goal being the design of new analogs with the ideal properties, for example with so-called "absolute specificities". Hence, correlations of their activities with a number of other properties are closely followed, with the hope to disclose those which mainly or ultimately reflect their biological effects. Among many physico-chemical methods, the spectroscopic ones clearly dominate but various other methods including, e.g., liquid chromatography, diffusion through the membranes or binding experiments are also frequently used. In this connection it is surprising that the electrochemical methods have been used only marginally regardless of the fact that the intramolecular SS-bond, present in all natural neuro-hypophyseal hormones and in a large majority of their synthetic analogs, yields a characteristic polarographic
reduction wave at mercury and other electrodes. Further, we can also expect a catalytic effect of the above peptides in the polarographic reduction of hydrogen, in analogy with many smaller and larger peptides as well as proteins. Finally, small modifications in the peptide molecule, known to bring about fundamental changes in their biological activity, may also affect the course of the electrochemical SS-bond reduction and/or other electrochemical characteristics of these peptides. So far, polarography has been used in several instances only. Thus, in 1969, Krupička and Zaoráli described the DC-polarographic behavior of the natural nonapeptides [8-lysine]-vasopressin and [8-arginine]vasopressin and also of their synthetic analogs [1-β-mercaptopropionic acid, 8-α,γ-diaminobutyric acid]vasopressin and [1-β-mercaptopropionic acid, 8-α-arginine]vasopressin. In 1975, Rishpon and Miller studied adsorption and electrode reactions of oligopeptides oxytocin, deaminoxytocin and [8-lysine]vasopressin at the dropping mercury electrode and, in 1984, Forsman described cathodic stripping voltammetry of oxytocin, [8-lysine]vasopressin, [2-phenylalanine, 8-lysine]vasopressin and several other compounds from the point of view of quantitative determination of minute amounts of these compounds.

In this paper, we present results of our own investigation of the polarographic activity of ten peptides: oxytocin, seven of its synthetic analogs (including three carba analogs), and two analogs of vasopressin. In distinction to the above quoted papers we did not restrict our study to the area of the S—S bond reduction only but covered the entire potential range available. Thus, five distinct potential regions were investigated and discussed: the zero-charge region, the region of the positively charged electrode surface (i.e., the region of the reference electrode potential), and the region of the negatively charged electrode surface which we divided into three parts — the region of the S—S bond reduction, the region of the catalyzed hydrogen discharge, and the region in-between. The behavior of the peptides at the uncharged electrode was followed with particular interest as the hydrophobicity of the peptide molecule and the chemisorption interaction between the peptide and the electrode are not disturbed by the electrostatic interactions and/or by the splitting of the S—S bond. For better elucidation of the possible role of hydrophobicity we performed also liquid chromatographic separation of the peptides on reverse Cys,lease,

![Fig. 1](image-url)
Conformation of the peptide V determined in crystal. According to Wood et al.

phase. Since other physicochemical methods have provided evidence for very similar conformational and dynamic properties of the studied peptides (see ref.1) it was assumed that different retention on reverse phase can be explained by different hydrophobicities of various amino acid side chains.

As concerns conformation, the contemporary ideas, supported by the recent determination of the crystal structure of deaminooxytocin, view a structure which contains a β-turn consisting of the amino acids Tyr-Ile-Gln-Asn, and is stabilized by the intramolecular hydrogen bond between the carbonyl of tyrosine and the backbone NH of asparagine (see Fig. 1). In aqueous solutions, all these peptides are conformationally very flexible. The only peptide amide proton that appears to be significantly solvent shielded in aqueous solutions is the Cys6 proton. The Asn5 peptide amide proton also may be shielded to a small extent. Most of the oxytocin analogs as well as arginine- and lysine-vasopressin have very similar conformations about the disulfide bond. The above conclusions of the experimental investigations have been confirmed also by calculations of the energy content of various conformations in water.

At the charged electrode surface, electrostatic interactions between the electrode and electrically charged groups in the peptide molecule contribute to the overall electrochemical activity of the peptides. The amide group of the peptide chain is electrically neutral. Oxytocin with the NH\textsubscript{2}-group or with the modified terminal NH\textsubscript{2}-group is always electrically uncharged. The value of pK of the α-amino group decreases considerably in the vicinity of the disulfide group (e.g., pK of diglycyleystin is 7.94, that of cystinylglycine as low as 6.36). For oxytocin literature states the value of 6.3 (ref.1). The value of pK for arginine is 12.48 and for lysine 10.53 (ref.8). Having had such broad spectrum of basically similar peptides it was our interest also to see the importance of various functional groups in the peptide molecule for the resulting catalytic activity in the hydrogen evolution reaction. This question was raised, a.o., by Millar9 and the role of sulfur in this type of catalytic activity has not been completely elucidated until today.

EXPERIMENTAL

All the ten peptides studied were of synthetic origin. Their chemical names, summary formulas, and literature dealing with their synthesis and basic properties, are surveyed in Table I. Storage solutions of the peptides in concentrations 1.10-2, 1.10-3 and 1.10-4 mol l-1 have been prepared by dissolution of the peptides in 1.10-2 mol l-1 HCl. The solutions were stored in the refrigerator.

According to the information of the producer the supplied samples of the peptides contained always variable amounts of acetic acid (max. 4 molecules) and water (max. 6 molecules in one molecule of the peptide). This represents a contribution of min. 78 (1 CH\textsubscript{3}COOH + 1 H\textsubscript{2}O) and max. 348 (4 CH\textsubscript{3}COOH + 6 H\textsubscript{2}O) to the molecular mass of the peptide. The smallest of them (peptide VII) had m.w. 988, the largest one (peptide IX) m.w. 1 227. The values of peptide concentrations stated in this paper are derived from the amounts of the weighted aliquots of the
supplied samples with the presence of either CH$_3$COOH or H$_2$O in their molecule neglected. With respect to the above given values, the actual concentrations of the peptides in solutions prepared by us in this study are always lower than we state, the difference being at least 6% and at most 26%. Since we had at our disposal only minute amounts of the peptide samples (units and tens of mg), we could not determine more precisely their concentrations in the studied solutions. With respect to the above variability (6 to 26%) we also did not perform correction for dilution, which represented 0-5 to 5%.

Crystalline sodium tetraborate, boric acid and hydrochloric acid were all products of Lachema Brno, Czechoslovakia. All reagents used were of analytical reagent purity. Water was doubly distilled.

For the DC- and DP-polarography we used the polarographic analyzers PA-2 or PA-3 and the XY-recorder model XY-4 103, all products of Laboratorní přístroje Prague, Czechoslovakia. The scan rate was 2 or 5 mV s$^{-1}$ and the forced drop time 2 s; the flow of mercury did not exceed 2 mg s$^{-1}$. The polarization pulse in DP-measurements amounted to -50 mV.

Phase-sensitive AC-polarograms were recorded with the help of the GWP-673 polarograph and the ENDIM 62 002 recorder, both products of the Zentrum für wissenschaftliche Gerätebau Berlin, G.D.R. The non-test regime of the AC-curves has been used with damping 5, time of the forced drop 4 s, flow of mercury 1.1 mg s$^{-1}$. The scan rate equalled 8.3 mV s$^{-1}$.

Cyclic voltammetry was performed with the hanging mercury drop electrode SMDE-1 combined with the analyzer PA-3 and recorder XY-4 103, all products of Laboratorní přístroje Prague, Czechoslovakia. The growth time of one drop used was always 160 ms. With the excep-

Table I

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Chemical name</th>
<th>Summary formula</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>oxytocin</td>
<td>C${43}$H${66}$N${12}$O${12}$S$_2$</td>
<td>—</td>
</tr>
<tr>
<td>II</td>
<td>[2-O-methyltyrosine]oxytocin</td>
<td>C${44}$H${68}$N${12}$O${12}$S$_2$</td>
<td>10</td>
</tr>
<tr>
<td>III</td>
<td>N-CH_3CO-[2-O-methyltyrosine]oxytocin</td>
<td>C${46}$H${70}$N${12}$O${12}$S$_2$</td>
<td>11</td>
</tr>
<tr>
<td>IV</td>
<td>N-(CH$_3$)$_2$CCO-[2-O-methyltyrosine]oxytocin</td>
<td>C${49}$H${76}$N${12}$O${13}$S$_2$</td>
<td>12</td>
</tr>
<tr>
<td>V</td>
<td>deamino-oxytocin</td>
<td>C${43}$H${65}$N${12}$O${12}$S$_2$</td>
<td>13</td>
</tr>
<tr>
<td>VI α</td>
<td>[2-L-p-$\text{ethylphenylalanine}$]deamino-6-carba-oxytocin</td>
<td>C${46}$H${71}$N${14}$O${11}$S</td>
<td>14</td>
</tr>
<tr>
<td>VI β</td>
<td>[2-D-p-$\text{ethylphenylalanine}$]deamino-6-carba-oxytocin</td>
<td>C${46}$H${71}$N${14}$O${11}$S</td>
<td>15</td>
</tr>
<tr>
<td>VII</td>
<td>[2-O-methyltyrosine]deamino-1-carba-oxytocin</td>
<td>C${46}$H${69}$N${12}$O${12}$S</td>
<td>16</td>
</tr>
<tr>
<td>VIII</td>
<td>[8-L-arginine]deamino-vasopressin</td>
<td>C${48}$H${94}$N${14}$O${12}$S$_2$</td>
<td>17</td>
</tr>
<tr>
<td>IX</td>
<td>glycy1-glycy1-glycy1-[8-lysine]vasopressin</td>
<td>C${52}$H${74}$N${16}$O${15}$S$_3$</td>
<td>18</td>
</tr>
</tbody>
</table>

* Papers dealing with synthesis and properties of the respective peptides.
tion of cases when we studied the effect of accumulation the 1st cycle was begun always immediately after the formation of a new drop.

Instantaneous current vs time curves were recorded with mutually interconnected analyzers PA-2 and PA-3. For logarithmic analysis we used only currents recorded one second and further after the beginning of the drop. Unless otherwise stated, saturated calomel electrode served as the reference electrode. During AC-polarography, the auxiliary electrode was formed by the bottom mercury, in all other cases platinum sheet was used.

Liquid chromatography on the reversed phase was performed with the instrument SP-8 700 furnished with the spectrophotometric detector SP-8 400 and the integrator SP-4 100 (Spectra Physics, Santa Clara, U.S.A.). We used the 25 × 0·4 cm column with Separon SIC-18 7 μm (Laboratoriční přístroje Prague, Czechoslovakia). For elution the methanol gradient of 2 vol. % min⁻¹ was used, which began either with 25 vol. % methanol (when the buffer of pH 2·2, i.e., 0·05 vol. % trifluoroacetic acid, was used), or with 50 vol. % methanol (buffer 0·1 mol L⁻¹ CH₃COONH₄, pH 7·5). Peptides were analyzed both separately and together.

RESULTS

REGION OF THE NON-FARADAIC PHENOMENA

In order to obtain information about the behavior of peptides on the mercury/solution interface also at potentials at which they do not get reduced, we recorded polarographic curves from the potential of the anodic mercury dissolution. Polarograms of the peptides I, II, III, V, VII, VIII, and IX in concentrations of 2·10⁻⁵ and 2·10⁻⁴ mol·l⁻¹ were compared with the curve for the blank alone (0·05M-borax, 0·5M-H₃BO₃, pH 7·4). Results obtained with mean currents have been evaluated in detail for peptide III with the help of the instantaneous current vs time curves. All tested peptides exhibit small cathodic non-Faradaic current which is a consequence of their specific interaction with the electrode surface in the potential interval from the mercury dissolution to the SS-reduction wave. Beginning of the rise of the anodic current, corresponding to the dissolution of mercury, is shifted to variable extent towards the more negative potentials in the presence of the peptides, but this shift never exceeds 50 mV. The anodic wave is not formed. Peptides which yield higher cathodic current of this interaction (the highest current was observed in the presence of peptide VII) influence less the anodic dissolution of mercury.

REGION OF THE FARADAIC PHENOMENA

Reduction of the SS-Group

DC-polarography: With the exception of the carba analogs (peptides VIIa, VIIb, and VII) all studied peptides gave well developed cathodic wave at potentials c. -0·6 to -0·8 V vs sce (depending on pH and peptide concentration); this cathodic wave obviously belongs to the reduction of the disulfide group. Limiting current of this
wave is purely diffusion controlled in nature, as follows from the measurements of its dependence on height of the mercury reservoir and on temperature; the above conclusion is supported also by the course of the instantaneous current vs time curves, which are monotonous parabolas with the exponent, \(x \), in the expression \(i = kt^x \) close to 0.17. Also the dependence on the peptide concentration was linear in the whole concentration region tested (3 \(\times \) 10\(^{-5} \) to 5 \(\times \) 10\(^{-4} \) mol \text{ l}^{-1}, with peptide \(\text{VIII} \) 1 \(\times \) 10\(^{-5} \) to 1 \(\times \) 10\(^{-3} \) mol \text{ l}^{-1}).

The values of \(E_{1/2} \) at pH 7.4 for several concentrations of the peptides are given in Table II. With increasing peptide concentration the half-wave potential is initially (between 3 \(\times \) 10\(^{-5} \) and 1 \(\times \) 10\(^{-4} \) mol \text{ l}^{-1} peptide) shifted towards the less negative values, but at higher peptide concentrations the direction of this shift becomes reversed; upon change of the peptide concentration from 1 \(\times \) 10\(^{-4} \) to 5 \(\times \) 10\(^{-4} \) mol \text{ l}^{-1} and in the region of pH 7.4 to 9.2 the shift of \(E_{1/2} \) amounts to 20 to 70 mV depending on the peptide.

Effect of pH on \(E_{1/2} \) was studied in detail with peptide \(\text{VIII} \) only; between pH 7.4 and 9.2, \(E_{1/2} \) was shifted negatively with increasing pH, the increment for unit pH being c. 60 mV at lower (1 and 2 \(\times \) 10\(^{-4} \) mol \text{ l}^{-1}) and c. 40 mV at higher (6 \(\times \) 10\(^{-4} \) mol \text{ l}^{-1}) concentrations of peptide \(\text{VIII} \).

Logarithmic analysis of the S–S reduction wave yielded mostly single line whose coefficient of linear correlation, \(r \), was higher than 0.99. Peptide \(\text{III} \) was an exception since it gave two distinct linear segments, whose slopes differed considerably from each other. Also here, the values of the coefficient \(r \) for both linear segments considerably exceeded 0.99; the linear regression analysis of the whole correlation field yielded the lines with \(r = 0.978 \) or less (Fig. 2). At pH 7.4 and peptide concentration

![Fig. 2](image)

Logarithmic analysis \((X \equiv \log (I/(I_0 - I)))\) of the peptide \(\text{III} \) reduction wave at pH 9.2. Values for mean currents. Peptide concentration (in 10\(^{-4} \) mol \text{ l}^{-1}): a 1; b 2. Inverse value of the slope, \(1/s \) (in mV), coefficient of correlation, \(r \): \(a_1 \) 201.9, 0.9946; \(a_2 \) 70.6, 0.9956; \(a_3 \) 84.9, 0.9783; \(b_1 \) 158.6, 0.9929; \(b_2 \) 42.9, 0.9965; \(b_3 \) 70.4, 0.9401
1.0 \times 10^{-4} \text{ mol} \text{l}^{-1}, the value of the slope of the above line increased in the sequence peptide \(V (84.7) - VIII (87.8) - IV (103.4) - IX (117.4) - III (125.5) - II (130.1) - I (151.2 \text{ mV}) \). Changes in the slope value with peptide concentration were monotonic (decrease upon increasing concentration of the peptide) only in the case of peptides \(III, IV, \) and \(V \) (i.e., peptides of the oxytocin type with modified terminal \(\text{NH}_2 \)-group). Decrease of pH from 9.2 to 7.4 had practically no effect on the value of the slope of peptide \(VIII \), increased slightly the slope of peptide \(IX \) (20 to 30 mV increase depending on the peptide concentration) and increased somewhat more the value of the slope of peptides \(II \) (increase 15 to 85 mV) and \(III \) (increase 50 to 60 mV).

We consider important our finding that the DC-polarograms at potentials of the foot of the SS-reduction wave of peptides \(I, II, III, \) and \(IX \) were often accompanied by characteristic irregularities (several examples see in Fig. 3 above); with peptide \(III \) in higher concentrations \((3 \text{ and } 5 \times 10^{-4} \text{ mol} \text{l}^{-1})\) even the well developed prewave separated out from the main reduction wave. The irregularities manifested themselves particularly on the course of the instantaneous current vs time curves. Under the experimental conditions used in this study, no indication of any irregularities of the above type has been observed with peptides \(IV, V, \) and \(VIII \).

DP-polarography: DP-polarograms were recorded with peptides \(I, II, III, VIII, \) and \(IX \). All of them gave distinct DP-peak at potentials close to the value of \(E_{1/2} \) for the DC-reduction wave of the SS-group under the same experimental conditions. Again, peptides \(I, II, \) and \(III \) often exhibited irregular behavior at potentials of the foot of the SS-reduction wave. Under the DP-regime, these irregularities manifested themselves, e.g., by the presence of one or two shoulders on the foot(s) of the DP-peak; by marked asymmetry of the DP-peak; or by the presence of a well-developed independent DP-peak preceding the main DP-peak. Examples of all three above specified types of the irregular behavior are shown in Fig. 3 (bottom). While the height of the (main) DP-peak always increases linearly with increasing concentration of the peptide, the additional preceding small DP-peak increases with the exponent less than one. Under the used experimental conditions, peptides \(VIII \) and \(IX \) never gave any indication of the above or another type of the irregular behavior.

Cyclic voltammetry: Cyclic voltammograms were recorded at pH 7.4 and in the concentration interval between \(3 \times 10^{-5} \) and \(5 \times 10^{-4} \text{ mol} \text{l}^{-1} \) (peptides \(I, II, III, VIII, \) and \(XI \)), or \(1.5 \times 10^{-5} \) and \(1 \times 10^{-4} \text{ mol} \text{l}^{-1} \) (peptides \(IV \) and \(V \)). The investigated potential region was at most 0 to \(-1.6 \text{ V} \), scan rate 20 to 200 mV s\(^{-1}\).

With peptide \(III \) in concentration \(3 \times 10^{-5} \text{ mol} \text{l}^{-1} \) and at scan rate 100 mV s\(^{-1}\), the first cycle yielded single cathodic (C) and single anodic (A) peaks at \(-0.75\) and \(-0.76 \text{ V} \), resp. With the other peptides, one or two additional side peaks or shoulders were always present on both the cathodic and anodic branches of the cyclic voltammograms; we denote these side peaks or shoulders with the indexes p.
<table>
<thead>
<tr>
<th>Collection Concentration, 10^5 mol l$^{-1}$</th>
<th>Scan Rate, mV s$^{-1}$</th>
<th>Peptide Scan</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VIII</th>
<th>IX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>685</td>
<td>715</td>
<td>755</td>
<td>710</td>
<td>720</td>
<td>770</td>
<td>780</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>668</td>
<td>655</td>
<td>679</td>
<td></td>
<td></td>
<td>682</td>
<td>730</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>670</td>
<td>705</td>
<td>740</td>
<td>720</td>
<td>730</td>
<td>750</td>
<td>755</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>675</td>
<td>715</td>
<td>720</td>
<td>725</td>
<td>720</td>
<td>760</td>
<td>755</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>675</td>
<td>690</td>
<td>735</td>
<td>725</td>
<td>740</td>
<td>745</td>
<td>760</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>670</td>
<td>690</td>
<td>780</td>
<td>730</td>
<td>730</td>
<td>740</td>
<td>780</td>
<td>830</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>685</td>
<td>705</td>
<td>760</td>
<td>740</td>
<td>725</td>
<td>745</td>
<td>770</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>705</td>
<td>755</td>
<td>780</td>
<td>730</td>
<td>740</td>
<td>780</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>690</td>
<td>705</td>
<td>730</td>
<td>730</td>
<td>755</td>
<td>780</td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>690</td>
<td>722</td>
<td>780</td>
<td>730</td>
<td>755</td>
<td>780</td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>692</td>
<td>717</td>
<td>775</td>
<td>745</td>
<td>750</td>
<td>785</td>
<td>805</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>695</td>
<td>730</td>
<td>765</td>
<td>745</td>
<td>785</td>
<td>798</td>
<td>808</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>705</td>
<td>755</td>
<td>745</td>
<td>—</td>
<td>—</td>
<td>775</td>
<td>830</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>710</td>
<td>735</td>
<td>755</td>
<td>—</td>
<td>—</td>
<td>795</td>
<td>830</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>710</td>
<td>735</td>
<td>755</td>
<td>—</td>
<td>—</td>
<td>795</td>
<td>830</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>715</td>
<td>755</td>
<td>790</td>
<td>—</td>
<td>—</td>
<td>820</td>
<td>840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>770</td>
<td>790</td>
<td>840</td>
<td>—</td>
<td>—</td>
<td>815</td>
<td>850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>780</td>
<td>805</td>
<td>850</td>
<td>—</td>
<td>—</td>
<td>820</td>
<td>830</td>
<td></td>
<td></td>
</tr>
<tr>
<td>664</td>
<td>664</td>
<td>713</td>
<td>—</td>
<td>—</td>
<td>693</td>
<td>686</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>770</td>
<td>800</td>
<td>865</td>
<td>—</td>
<td>—</td>
<td>820</td>
<td>840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>770</td>
<td>810</td>
<td>875</td>
<td>—</td>
<td>—</td>
<td>840</td>
<td>845</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples of irregularities on polarographic records. 0.12 mol l\(^{-1}\) borate buffer. Above: DC, pH 7.4, peptides III and IX; middle AC, pH 7.4, peptide III; bottom left DP, pH 7.4, peptide II; bottom center DP, pH 7.4, peptide III; bottom right DP, pH 9.2, peptide III. Numbers at curves denote peptide concentration (in 10\(^{-5}\) mol l\(^{-1}\)).
(more positive) or n (more negative) depending on their position as compared to the main cathodic or anodic peak C or A, resp. Both the main peaks A and C of the peptide III and the side anodic peak Aₚ of this peptide have exceptionally sharp shape, as shown in Fig. 4 left.

With increasing peptide concentration the height of the main cathodic peak C always linearly increases. The main anodic peak A also rises, but only at lower peptide concentrations (up to c. 1 . 10⁻⁴ mol l⁻¹) while at higher peptide concentrations it ceases to grow and remains practically constant. Also the side anodic peaks Aₚ and Aₚ rise only at lower peptide concentrations, the only exception being the Aₚ peak of the peptide II.

The value of potential of the main anodic peak A is practically independent of the peptide concentration. The difference between the potentials of the main cathodic (C) and main anodic (A) peaks, ΔE, increases with increasing concentration of the peptide. Thus, for peptide III at scan rate 100 mV s⁻¹ the value ΔE grew from −10 mV through 0, 20, and 30 mV to 120 mV at concentrations of this peptide of 3, 6, 10, 30, and 50 . 10⁻⁵ mol l⁻¹. Similar values of the ΔE were found also for peptides III, IV, and V. Influence of the scan rate was small and often not monotonous.

Upon increasing the scan rate, the height of the main peaks A and C of all peptides increases monotonously with the exponent less than one. The side peaks Cₚ, Cₚ, Aₚ, and Aₚ become more distinct at higher scan rates.

The influence of the initial and reversal potentials on the first cycle was studied at the peptide concentration 1 . 10⁻⁴ mol l⁻¹ and the scan rate 100 mV s⁻¹. Shift of the initial potential from the usual 0 V to more negative values (up to the foot of the main cathodic wave C) had no effect; analogously, the positive shift of the reversal potential from the usual −1.5 V up to −0.9 V had no influence on the shape and size of the peaks on cyclic voltammograms of the studied peptides.

Effect of peptide cumulation on the surface of the hanging drop was studied both in the stirred and unstirred solutions. Peptide concentration was 8 . 10⁻⁵ mol l⁻¹ for peptide IV and 1 . 10⁻⁴ mol l⁻¹ for the other peptides, scan rate mostly 100 mV s⁻¹. Cumulation time was 240 s or less, cumulation potential varied between 0 and −0.7 V. Under these conditions, we never observed any changes in cyclic voltammetric behavior with peptides III, V, and VIII. After cumulation at −0.3 and −0.5 V, the main peak C of the peptide IX was shifted to more negative potentials (Fig. 5). With the peptides I, II, and IV, cumulation sometimes led to the increase of height of the peak C. In stirred solutions, a new shoulder on the peak C of the peptides I and IV was created (Fig. 5).

The anodic branches of cyclic voltammograms of the 1st and 2nd (immediately repeated) cycles were always identical. On the other hand, the cathodic branch of the 2nd cycle always exhibited the new peak or shoulder which was absent in the 1st cycle (see dashed line in Fig. 4).
AC-polarography: Effect of peptide concentration and effect of frequency of the superimposed voltage have been followed using this technique.
Fig. 4
Cyclic voltammograms at pH 7.4. Peptide concentration 3×10^{-5} mol l$^{-1}$. Scan rate (in mV s$^{-1}$): left 100, right 50. (-----) 1st cycle; (-----) 2nd cycle. C, A — main cathodic and anodic peak, respectively; C_n, A_n — "shoulders" at more negative potentials; C_p, A_p — "shoulders" or peaks at less negative potentials than the potentials of the main peaks C and A, respectively.

Fig. 5
Cyclic voltammograms at pH 7.4. Effect of cummulation time of the peptide at the electrode surface before starting the scan. 1st cycle. Peptide concentration (in 10^{-5} mol l$^{-1}$): (I, II, IX) 10; (IV) 8. Scan rate (in mV s$^{-1}$): II-a 50; otherwise 100. With the exception of I-d (-----) and IV (curve 2) no stirring of the solution. I-a: cummulation at 0 V, cummulation time (s): (-----) 0; 1 20; 2 120. I-b: cummulation at -0.2 V, cummulation time (s): (-----) 0; 1 20; 2 80. I-c: cummulation at -0.4 V, cummulation time (s): (-----) 0; (-----) 40. I-d: cummulation at 0 V; (-----) 120 s without stirring; (-----) 60 s stirring + additional 60 s without stirring. II-a: (-----) without cummulation; otherwise always cummulation for 40 s at potential (V): 1 0; 2 -0.1; 3 -0.2; 4 -0.3. IX: cummulation at -0.7 V, cummulation time (s): (-----) 0; (-----) 20; (-----) 40; (-----) 60. IV: cummulation at 0 V; (-----) 0; (-----) 20; (-----) 120; 1 240 s; 2 60 s stirring + additional 60 s without stirring.
In our studies with the peptides I, II, III, IV, V, VIII, and IX, we applied alternating voltage of the amplitude 10 mV and frequency 230 Hz; with peptides VIa, VIb.
and VII, the above quantities were 20 mV and 290 Hz. Borate buffer of pH 7.4 served as a blank electrolyte.

Curves of the component of the electrode admittance, which was 90° phase shifted as compared to the superimposed alternating voltage (further: capacity curves) in accessible region of the applied d.c. potential (c. +0.1 to -1.8 V) exhibited in the presence of peptides characteristic changes in five different potential regions. Below, we denote these five regions as region RE (around the potential of the reference electrode), region ZC (zero-charge), region SS (reduction of the disulfide group), region MN (more negative than the SS-region), and region HH (catalyzed evolution of hydrogen). In each of these five regions, smaller or larger individual differences between the peptides were found (Fig. 6).

In the RE-region, with all peptides the admittance increases in comparison with the blank. This increase is often restricted to the lower peptide concentrations and is reversed above certain concentration of the peptide (Fig. 6, peptides I, III, V, VII, and IX). The effect is most pronounced with peptide IX (here the increase of admittance extends even to the ZC-region) and is the smallest with peptide II.

In the ZC-region, we observed pronounced lowering of the electrode admittance with all peptides (relatively the least with peptide IX); this lowering becomes more pronounced upon increase of the peptide concentration. Sometimes (peptide VIII) the above change is regular, in other cases (peptides I and II) a distinct jump between the concentrations of the peptides of 2 and 4.10⁻⁵ mol l⁻¹ has been observed.

In the SS-region (around -0.6 V) the distinct pseudocapacitance peak is present, which is obviously missing in carba-analogs (Fig. 6). For vasopressin derivatives, the peak is mostly simple and symmetrical and only occasionally it exhibits a sign of splitting. With oxytocin and its derivatives, the above peak is always distinctly split. Upon increasing the peptide concentration the peak initially grows but later decreases, the detailed course is, however, characteristically different for different peptide groups. With peptides III, IV, and V, the highest peak is observed at the peptide concentration 2.10⁻⁵ mol l⁻¹ and already at 4.10⁻⁵ mol l⁻¹ peptide it becomes considerably suppressed, almost (with peptide III entirely) to the level of the admittance of the blank. With the other peptides, the above inversion occurs at higher peptide concentrations (6, 8, 10 or 30.10⁻⁵ mol l⁻¹) and the subsequent decrease of the peak is slow. With carba-analogs the discussed potential region
(around \(-0.6\ \text{V}\)) is not influenced by the pseudocapacitance peak and the changes of admittance with peptide concentration preserve here the trend from the preceding potential region ZC, i.e., with increasing peptide concentration the admittance monotonously decreases to a limit. Each of the three carba-analogs \(VIa, V Ib,\) and \(VII\) yields its characteristic shape of the curves (Fig. 6).

Also in the MN-region the curves monotonously fall towards the limit below the curve for the blank. The only exception is peptide \(IX,\) whose capacity curves differ negligibly from those of the blank.

The effect of frequency (21, 80, 230, 460, and 770 Hz) was studied with peptides \(I, II, III, VIII,\) and \(IX\) in concentration \(2 \times 10^{-5}\ \text{mol l}^{-1}\) in borate buffer, pH 7.4. Absolute values of the admittance in all cases rose with increasing frequency (e.g., at the potential of zero charge the values of the phase shifted component of the electrode admittance in basic electrolyte is \(6 \times 10^{-5}\ \Omega^{-1}\) for 21 Hz and \(2 \times 10^{-3}\ \Omega^{-1}\) for 770 Hz). Compared to the blank, with increasing frequency the pseudocapacitance peak corresponding to the SS-reduction becomes less distinct; similarly, smaller
differences between the capacity curves for blank alone and for blank plus peptide have been observed in the potential region RE at higher frequencies.

Catalyzed Evolution of Hydrogen

DC-polarography: With the exception of the carba-analogs all studied peptides yielded well pronounced catalytic hydrogen waves at potentials preceding those of the blank decomposition. By far the highest catalytic hydrogen currents are produced by the vasopressin analogs (peptides VIII and IX, see Fig. 7). From the oxytocin group, peptides I and II are most active; the activity of the other oxytocin analogs is much less, that of the carba-analogs being virtually zero.

The catalytic hydrogen activity of the peptides II, III, VIII, and IX has been studied in more detail. With increasing peptide concentration, the catalytic hydrogen maximum (or a double maximum) is shifted somewhat to more negative potentials and its height increases, though not always linearly (Fig. 8).

With decreasing pH (between pH 11.0 and 7.3) the potentials of both catalytic maxima in borate buffers are slightly shifted to more negative values and their height increases (examples for peptides II and VIII see in Fig. 9). At pH 8.2 and less.
and at potentials $-1.7\, \text{V}$ or more negative the surface of the mercury electrode becomes soon covered by many gas bubbles.

The character of the catalytic hydrogen current of the peptides was elucidated from the studies of their dependence on temperature and on the height of the mercury reservoir; the instantaneous current vs time curves have also been recorded. With increasing height of the reservoir, the catalytic current is either practically unchanged (peptide III), or even decreases (peptides $VIII$ and IX). Temperature coefficient of the catalytic hydrogen current has the value $+0.4\% \, \text{K}^{-1}$ for peptide III and $+1.2\% \, \text{K}^{-1}$ for peptide IX. Current-time curves were measured at various potentials of the catalytic hydrogen wave of the peptides III and $VIII$. Values of the exponent, x, in the expression $i = kt^x$, for peptide $VIII$ were 0.80 at $-1.74\, \text{V}$, 0.83 at $-1.87\, \text{V}$, and 0.63 at $-1.95\, \text{V}$.

DP-polarography: DP-polarograms at potentials of the catalytic hydrogen wave have been recorded with peptide II only (Fig. 10). While the height of the less negative DP-peak increases with increasing peptide II concentration, that of the more negative DP-peak varies non-monotonously. The potentials of both DP-peaks are c. 100 to 130 mV less negative than the corresponding DC-maxima.

AC-polarography: Capacity curves in the HH-region show characteristic differences between the groups of peptides (Fig. 6). The derivatives of vasopressin (peptides $VIII$ and IX), and also two of the oxytocin analogs (those which have the α-NH$_2$ group, i.e., peptides I and II) exhibit considerable decrease of the electrode admittance in the shape of a peak (in the following, dip); this dip is obvious already

Fig. 11
Comparison of the predicted and experimentally determined elution times in chromatography on reversed phase. Retentions are given in relative scale $-\, 0\%$ for the most quickly and 100% for the most slowly eluted peptide. A Prediction according to Meek20, $0.1\, \text{mol}\, \text{l}^{-1}$ NaH$_2$PO$_4$, pH 7.4; B experiment, pH 7.5; C experiment, pH 2.2; D prediction according to Meek and Rossetti21, $0.1\, \text{mol}\, \text{l}^{-1}$ NaH$_2$PO$_4$ $+ 0.2\%$ H$_3$PO$_4$; E prediction according to Browne et al.22
at the peptide concentration 5×10^{-5} mol l$^{-1}$ (Fig. 6). At more negative potentials than those of the dip the peptides I and II show distinct peak which increases the admittance compared to that of the blank, but with peptides VIII and IX the latter peak is missing. Remaining peptides (oxytocine analogs with the modified or completely absent α-NH$_2$ group and the carba-analogs) do not show any dip; the peak which increases the admittance compared to the blank is, however, always present (Fig. 6, peptides III, IV, V, VIa, VIb, VII).

As concerns the effect of frequency, with peptide III the characteristic shape without the dip is frequency-independent; the dip of peptides I, II, VIII, and IX is more pronounced at higher frequencies.

Liquid Chromatography

The polarographic measurements have been compared with chromatographic separation of the ten peptides on the reversed phase at pH 2·2 and 7·5. The sequence of the peptides in both cases was identical: first eluted (i.e., the least hydrophobic) was peptide IX, which was followed by peptides VIII, I, II, III, VII, VIa, IV, and the most hydrophobic peptide VIb. Fig. 11 shows comparison of the above behavior with that predicted by us on the basis of individual structural contributions published in refs 20-22 and completed by our own calculations of several missing data (details see below). We did not attempt to predict the behavior of peptide VIb because of difficulties in estimation of the influence of the D-amino acid.

DISCUSSION

There are three general causes for the changed behavior of the peptide molecules after their transfer from the bulk of the solution to the vicinity of the mercury electrode:

a) Increase in local concentration of the peptides due to their partial pull-out from the bulk of the polar aqueous phase to any interface. Pulled-out molecules may be expected to be oriented towards the outside of the solution (i.e., towards the mercury electrode) predominantly by their hydrophobic parts, in the first place by the S—S or S-carba groups, in peptides II, III, IV, and VII also by the aromatic nucleus with methylated OH-group and, in peptides VIII and IX, also by the aromate of Phe (3rd amino acid).

b) Mercury has strong chemical affinity towards sulfur, particularly when the latter is in the form of the S—S group (see, e.g., ref. 23). This interaction only further strengthens the already existing orientation of the S—S or S-carba group towards the surface of the mercury electrode.

c) Electrical charge of the electrode brings about changes in orientation of water dipoles and electrostatic attraction or repulsion between the charged electrode
surface and positively charged groups in the peptide molecules (Arg8 in peptide
VIII, Lys6 in peptide IX, terminal NH2-group in peptide IX, depending on pH).
These groups are polar and very flexible and, at the potential of zero charge, they
can be expected to be oriented from the electrode into the solution.

Experimentally observed behavior of the studied peptides at the potential of zero
charge corresponds very well to the above presented considerations. The hydro­
phobicity of the molecule plays here the decisive role. The important polar group
is the OH-group in Tyr and its methylation in peptides II, III, IV, and VII or its
replacement by the C2H5-group in peptides VIa and VIb necessarily lead to the
increase of the hydrophobicity of the whole molecule. The removal of the α-amino
group in deamino analogs (peptides V, VIa, VIb, VII, VIII) has an analogous effect.
The more hydrophobic peptides can be expected to be more strongly pulled into all
interfaces, including the interface water/mercury electrode. On the basis of the
presence or absence of polar (OH, NH2) and electrically charged groups (side chain
basic groups of Lys and Arg, terminal amino group of triglycyl) all the studied
peptides may be arranged according to the increasing hydrophobicity as shown
in Fig. 11. There exist many publications which evaluate the contributions of individ­
ual amino acid residues to the overall hydrophobicity of the peptide (for a review
see ref. 24). Our estimations are largely based on contributions determined by Meek20,
Meek and Rossetti21, and Brown22, since these authors have used most similar
chromatographic conditions to those in our study and their sets also contain the
largest number of various structural features. However, in addition we had to cal­
culate the contributions of several not tabulated groups, i.e.: the deamination on
the N-terminal amino acid; the methylation of the hydroxyl of tyrosine or its replace­
ment by ethyl group; the carba-substitution of the disulfide bridge; the acylation
of the α-amino group by the pivaloyl residue. The contribution of the deamination
has been calculated from the difference of the influence of the amino-terminal glycine
and the acetyl group. Influence of substitution of the tyrosine hydroxyl was calculated
in accordance with ref. 25 which shows a correlation of the π-values of substituents
of the tyrosine aromatic ring in the oxytocin analogs with their chromatographic
behavior. The effect of carba substitution was derived experimentally from the
chromatographic behavior of the set of carba-analogs26. The contribution of the
pivaloyl group was calculated as a combination of the values of two methyl groups
and an acetyl residue. The values of the obtained contributions are listed in Table III.
Unfortunately, it was not possible to include the contribution of the different config­
uration of the amino acid residue, even though we can assume very roughly that the
introduction of the D-amino acid into the molecule leads to the increased retention
on reversed phase. In the study of diastereometric analogs it was found that the
change of configuration in position 8 of vasopressin increased the hydrophobicity
of the analog much less than the configurational change of leucine in position 8
of oxytocin or the same change in position 1 (cysteine) or 2 (tyrosine) in both
hormones (the latter behavior concerns also the peptides \(VIa \) and \(VIb \) studied in this paper). All chromatographic data support the idea of interaction of sulfur in position 6 with the tyrosine moiety in position 2 of oxytocin. In the cases of peptides \(VIa \) and \(VIb \) the interaction of cysteine with aromate is disturbed and the aromatic moiety is freed for the interaction with lipophilic stationary phase. The agreement of predicted and experimentally obtained data at two pH values (2.2 and 7.5) shown in Fig. 11 confirms the high prediction ability of the used methods. The only change in the sequence of actual elution vs the theory (i.e., the peptides \(III \) and \(VII \)) may be explained either by overestimation of lipophilicity of the acetyl residue by the theory, or by the fact that the substitution of \(\alpha \)-amino group by acetyl significantly changes the conformation of the analog and, as a consequence, also the energetic parameters of its interaction with the stationary phase. The largest absolute deviation from the theory is exhibited by the peptide \(VIII \) which, however, contains D-arginine and a change of the configuration has not been included in our calculation.

The sequence of peptides shown in Fig. 11 corresponds very well also with the order in which these peptides in low concentrations lower the electrode admittance \(\Delta Y' \) at the zero charge potential, as compared with the value for the basic electrolyte. Thus, e.g., for peptide concentration \(2 \cdot 10^{-5} \text{ mol l}^{-1} \) the following values of \(\Delta Y' \) (\(10^3 \Omega^{-1} \)) have been derived from Fig. 6:

\[
0.047 (IX) < 0.063 (VIII) < 0.110 (I) < 0.118 (II) < 0.157 (IV) < \\
< 0.204 (III) < 0.220 (V) < 0.274 (VIb) < 0.313 (VIa, VII).
\]

TABLE III

<table>
<thead>
<tr>
<th>Structural element</th>
<th>Ref. 21</th>
<th>Ref. 20</th>
<th>Ref. 22</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min(^a)</td>
<td>min(^b)</td>
<td>min(^c)</td>
</tr>
<tr>
<td>Deamino</td>
<td>6·8</td>
<td>3·6</td>
<td>2·6</td>
</tr>
<tr>
<td>Tyr(Me)</td>
<td>13</td>
<td>12·2</td>
<td>13·5</td>
</tr>
<tr>
<td>Phe(Et)</td>
<td>22·4</td>
<td>21·4</td>
<td>22·4</td>
</tr>
<tr>
<td>Pivaloyl</td>
<td>16·3</td>
<td>13·4</td>
<td>13·2</td>
</tr>
<tr>
<td>1-Carba(^f)</td>
<td>-0·6</td>
<td>-0·6</td>
<td>-0·6</td>
</tr>
<tr>
<td>6-Carba(^f)</td>
<td>-2·4</td>
<td>-2·4</td>
<td>-2·4</td>
</tr>
</tbody>
</table>

\(^a\) Bio Rad ODS, linear gradient of CH\(_3\)CN (0·75% min\(^{-1}\)); buffer 0·1M NaClO\(_4\) + 0·1% H\(_3\)PO\(_4\).
\(^b\) As in note\(^a\) but buffer 0·1M NaH\(_2\)PO\(_4\) + 0·2% H\(_3\)PO\(_4\).
\(^c\) As in note\(^a\) but buffer 0·1M NaClO\(_4\), pH 2·1.
\(^d\) As in note\(^a\) but buffer 0·1M NaClO\(_4\), pH 7·4.
\(^e\) Waters C\(_18\) Bondapak, linear gradient of CH\(_3\)CN (0·33% min\(^{-1}\)); buffer 0·1% TFA.
\(^f\) Retention should be calculated for cysteine containing compound and corrected by the given value.
Evidently, hydrophobicity has a decisive influence on the behavior of peptides in the mercury/solution interface at the potential of zero charge. The contribution due to the chemical attraction between the sulfur atoms of the disulfide group and the mercury atoms of the electrode is obviously similar for different peptides: replacement of one sulfur atom by carbon in carba analogs seems to have further positive influence on the surface excess of the peptide in the water/mercury interface. Electrostatic interactions between the peptides and the electrode do not occur at the zero charge potential. The only two anomalies between the sequences which follow from the HPLC and from the AC-polarographic behavior occurred in case of the peptides IV and V. From the chromatographic behavior it follows that the hydrophobicity of peptide IV is very high, even higher than that of the carba analog VIa, but the AC-polarography recorded only a relatively small lowering of the electrode capacity (less than with peptides III, V, VIa, VIb, and VII). We believe that just with this peptide IV the chemical attraction between sulfur and mercury cannot occur for steric reasons. On the other hand, with peptide V the S—S group is most exposed, what evidently leads to a stronger interaction of this peptide V with mercury atoms of the working electrode than, e.g., in case of peptides II or III. Both these deviations in behavior of peptides IV and V from the otherwise identical sequence of HPLC and AC-polarography support the conclusion which also stems from the DC-polarographic behavior, i.e., that the chemical interaction between the atoms of sulfur and mercury at the zero charge potential does occur and that its alteration may further support, or weaken, the contribution due to the hydrophobicity of the whole molecule of the peptide.

Transition from the potential of zero charge to the region of the positively charged electrode surface brings about electrostatic repulsion of the positively charged groups in peptides VIII and IX; with regard to the flexibility and polarity of these groups, it should not significantly influence orientation of the molecules of these two peptides in the interface. Their surface excess, however, may be negatively influenced, as confirmed by the results of DC-polarography. As follows from Fig. 6 for all peptides the imaginary component of the admittance of the mercury electrode increases above the curve for the basic electrolyte at potentials close to the potential of the reference electrode. Under these conditions the peptides at the interface lose the character of a passive dielectric and their specific interaction with the surface becomes the decisive factor for their behavior at the mercury electrode. The cathodic current accompanying the adsorption of the peptides at the positively charged electrode indicates that the interaction has the character of a surface bond, to which electrons are contributed by the electrode – presumably the chemical bond between sulfur and mercury is created where the electrons are shared by both partners. This interaction is not related to the electroreduction as it occurs both with the S—S and the nonreducible monosulfidic peptides. The electrode which shares electrons with the adsorbing substance cannot have an increased tendency to send free cations.
into the solution — consequently the more strongly interacting peptide VII does not affect the dissolution of mercury and, on the other hand, the peptides which interact less strongly (e.g., peptides VIII and IX) enhance somewhat the dissolution of mercury. The formation of compounds between the peptides and mercury ions in the solutions is obviously not energetically more favoured than the surface interaction.

In potential region of the S—S group reduction we have to deal with both the original (S—S) and electroreduced (SH) forms of the peptides. AC-polarography clearly shows (Fig. 6) that both these forms are adsorbed at the electrode. On voltammetric curves, (Fig 4) the electroreduction is accompanied by two pairs of peaks: C—A and C_n—A_n. Since the electroreduction of the S—S bond occurs reversibly as a surface process under the influence of the specific interaction with mercury^{23}, the main peaks C and A belong to the reversible reduction of the adsorbed peptide with its sulfur atoms in contact with the electrode. With respect to their shape and symmetry, we ascribe the more negative pair of peaks C_n—A_n to the change of the capacity of the mercury electrode connected with the electrode reaction. It marks the positive limit of adsorption of the electroreduction product, since the reduction product which is formed in the interaction with mercury is itself also adsorbed. With peptide VIII probably the couples C—C_n and A—A_n merge into two broad peaks. In the reverse phase of the voltammetric cycle part of the reduced peptide in the adsorbed state is oxidized into the original S—S form and another part facilitates the dissolution of mercury from the electrode (peak A_r). This results in formation of a new species which is sparingly soluble and adsorbs at the electrode surface. Mercury gets reduced from this compound in the second voltammetric cycle (dashed curves in Fig. 4).

Experimental results clearly show that the course of the electro-reduction of the cystine disulfidic group differs in individual peptides. This is not surprising in view of the different conformation and adsorptivity of the SS- and SH-forms at the electrode, which cause different reactivity in surface processes accompanying transfer of electrons between the electrode and the peptide. Table II gives evidence that, in principle, the conditions for the peptide reduction at the dropping and hanging mercury electrodes are not comparable. It is given by the different time periods for which the electrodes are exposed to the solution, and also by the different regimes of their polarization. At low peptide concentrations the adsorption equilibrium cannot be established during the 4 seconds of the drop life-time. Increase in peptide concentration initially accelerates establishment of this equilibrium already within the life-time of one drop; later, however, the inhibition of adsorption on the electrode process proper becomes effective. On the hanging drop, due to the time factor the establishment of adsorption equilibrium and inhibition effects occur at lower peptide concentrations, the adsorption equilibrium being disturbed upon the change of the electrode potential. The sharp peak observed under the particular conditions on the voltammetric curves of peptides II and III shows that, as a part of adsorption of these
peptides and/or their reduction products, compact oriented layers on the electrode surface are formed.

Situation in the electrode interface within the potential region between \(-0.8\) and \(-1.5\) \(V\), i.e., between the reduction of the \(S-S\) bond and the catalyzed hydrogen evolution (region MN), is fundamentally different for peptides containing cystine and for the nonreducible carba analogs of oxytocin. Peptides \(VIa\), \(VIb\), and \(VII\), which do not undergo reduction, arrive by diffusion from the solution and get adsorbed on the electrode. With the other peptides the electrode is being covered by the products of the electroreduction which diffuse away from the electrode into the solution after the coverage is complete. In both cases the orientation of the substances in the adsorbed state is again determined largely by the interaction of the sulfur atoms with the surface of mercury. With regard to the strong affinity of sulfur towards mercury it is probable that the adsorption is not reversible in the whole potential range and, hence, the consideration about the adsorption equilibrium is not always justified; exact electrocapillary measurements would help to solve this question. The AC-polarographic curves in Fig. 6 do not give a strictly rigorous picture of the adsorption of the peptides and their reduction products on mercury; however, for comparison of the adsorptivities a comparison of the course of the curves for the different compounds is quite adequate.

Upon transition from the positively to the negatively charged electrode, the carba analogs obviously undergo a change in their adsorption, brought about by the change in peptide conformation in the interface. Conspicuous is the difference between the curves of the optical isomers \(VIa\) and \(VIb\) reflecting their different orientation at the electrode surface over a wide range of potentials.

As can be judged from the AC-polarographic curves of the reducible peptides, particularly striking is the weak adsorption of the reduction product of peptide \(IX\) in comparison with the related peptide \(VIII\), the difference being obviously caused by the introduction of the bulky substituent into the neighbourhood of the \(S-S\) bond so that the contact between sulfur and mercury is sterically not convenient for interaction. The peak which exceeds the curve for basic electrolyte at negative potentials marks the final desorption of the peptide or of its reduction product from the electrode surface under the influence of the strong electric field. The absence of this peak on the curves of peptides \(VIII\) and \(IX\) is connected with the fact that, with these two peptides, a relatively strong electrolytic current due to hydrogen evolution flows through the electrode in the region of the negative potentials where the other peptides display the peak. In such case, with the apparatus used in this study, the AC-curves lose the physical meaning which they have under the passage of no or only small Faradaic currents.

From the considerable influence of \(pH\) on the currents observed in the potential region HH (examples for peptides \(II\), \(III\), \(VIII\), and \(IX\) see in Figs 8 and 9) it may be concluded that these currents are the catalytic currents of hydrogen. This con-
clusion is supported by the observation that at higher current densities (lower pH or higher concentration of the peptide) the surface of the mercury electrode becomes soon covered by gas bubbles.

The high catalytic hydrogen activity of the vasopressin analogs at pH 9.2 which exceeds that of peptides II and III by two orders of magnitude when measured by current (see Fig. 7) has to be ascribed to the side, nitrogen-containing groups of arginine in peptide VIII or lysine in peptide IX; their pK values are 12.48 (Arg) and 10.53 (Lys, see ref. 8). In peptide IX the partly protonated terminal group of triglycyl (pK 8–9) may as well contribute to some extent to the resulting catalytic hydrogen activity.

The bearer of the above activity of peptides I and II is the α-amino group. Since its pK is considerably lower than that of the nitrogen-containing groups in Lys or Arg (e.g., for peptide I the literature gives the value 6.3) the activity of peptides I or II becomes comparable to that of peptides VIII or IX only at lower pH values (for example of peptides II and VIII see Fig. 9).

Further decrease in the catalytic hydrogen activity of peptides III, IV, and V is obviously connected with the substitution of the terminal α-amino group (peptides III and IV) or its complete removal (peptide V).

In all above-discussed peptides the SH groups formed after the reduction of the disulfide bond may as well contribute somewhat to the overall catalytic hydrogen activity of these peptides. The pK₆ of these SH groups may be expected close to 8.5 (see, e.g., ref. 27).

The catalytic hydrogen activity of the carba analogs is virtually zero even in solutions of relatively low pH values and it manifests itself only as a slight shift of the blank decomposition currents towards less negative potentials.

In the literature the possible role of sulfur in the catalytic mechanism of the polarographic reduction of hydrogen from the protein- or peptide-containing solutions has been discussed. Our results suggest that the protonizable N-groups play a dominant role. However, the practically complete absence of catalytic hydrogen activity in the carba analogs and, on the other hand, the relatively considerable activity of peptide V both suggest a possible participation of sulfur, either direct (hydrogen reduction from the protonated SH group) or indirect (interaction of sulfur from the SH or S⁻ group with the mercury electrode, having an enhancing influence upon the magnitude of the catalytic effect).

Since the DC-catalytic hydrogen wave of peptides often has the shape of a single or a double maximum it may be concluded that the protonized forms of the peptides are relatively strongly adsorbed on the electrode surface also at potentials of the catalytic hydrogen wave; the sharp decrease of the catalytic current after its maximum peak may be explained by their desorption (example see in Fig. 7).

Participation of adsorption may also explain the observed dependences of the catalytic hydrogen current on temperature and on mercury pressure, and the values
of the exponent of the instantaneous current vs time curves. The DP-polarographic behavior of peptide II shows the very different character of the catalytic hydrogen current in the 1st and in the 2nd maximum (Fig. 10). Comparison of the shape of the AC-polarographic curves with the corresponding DC-polarograms permits to draw approximate conclusions about the adsorptivity of the individual substances in relation to their ability to catalyze hydrogen evolution. It seems that the more strongly adsorbed substances are weaker catalysts. The sharp dips on the curves of peptides I and II and especially VIII and IX are probably connected with the mechanism of the hydrogen evolution, which is particularly strongly catalyzed by the reduced forms of these four peptides.

If the reduced, i.e., the SH-forms of the peptides are adsorbed on the electrode even at very negative potentials (in the region HH), then these SH-forms will be adsorbed, and very probably much more strongly, also in the region SS. The splitting of the 20-member ring, which is a consequence of the polarographic reduction of the SS-group, the collapse of the 3-dimensional structure of the peptides into the statistical coil, and replacement of the strongly hydrophobic SS-group by the two strongly hydrophilic SH-groups (or, at higher pH, by two electrically charged groups S⁻) all necessarily lead to a considerable suppression of the hydrophobicity of the whole molecule. If, then, the relatively little hydrophobic SH-forms of the peptides are strongly surface active even at potentials of the catalytic hydrogen wave, then we must expect high surface activity of the original SS-forms of the peptides. This conclusion is in full agreement with all our experimental findings in this study.

Our thanks are due to Dr T. Barth from the Institute of Organic Chemistry, Czechoslovak Academy of Sciences, for providing us with five of the ten peptides investigated in this study. We are also grateful to Dr K. Markušová from the Faculty of Sciences, P. J. Šafárik University in Košice, for giving us the possibility to perform part of our measurements of cyclic voltammetry in her laboratory.

REFERENCES

Polarography of OXT and VP Analogs

Translated by the author (P.M.).