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Introduction 

Azasulfurylpeptides possess an amino sulfamide as an amino amide surrogate in which the CH and 
carbonyl components are respectively replaced by nitrogen and a sulfonyl group [1-4]. Uniting the 
properties of azapeptides [5] and sulfonamides [6-7], azasulfurylpeptides have served as transition 
state mimics of amide bond hydrolysis in a micromolar human immunodeficiency virus-1 (HIV-1) 
proteinase inhibitor [2]. Azasulfurylpeptides may similarly stabilize -turn conformations [8]. 
Solid-phase chemistry has however yet to be employed for the synthesis of azasulfurylpeptides. 
Targeting an azasulfurylpeptide analog of growth hormone releasing peptide-6 (GHRP-6, His-D-Trp-
Ala-Trp-D-Phe-Lys-NH2) in the context of our program to develop modulators of the cluster of 
differentiation-36 [9-11], we report herein a solid-phase approach to prepare azasulfurylphenylalanine4 
[AsF4]-GHRP-6. 

Results and Discussion 

A solid-phase synthetic method was developed to make [AsF4]-GHRP-6 employing an AsF-tripeptide 
building block on Rink amide resin. The required AsF-tripeptide building block was synthesized in 
solution by a route featuring the construction and alkylation of azasulfurylglycine (AsG) tripeptide 3, 
which was made without formation of symmetric sulfamide side product by acylation of hydrazide 2 
with p-nitrophenyl-sulfamidate 1 (Scheme 1) [3]. Chemoselective alkylation on the AsG-tripeptide 3 
using benzyl bromide and tetraethylammonium hydroxide installed the benzyl side-chain onto the 
N-aminosulfamide residue. Selective cleavage of the Boc protecting group of 4 in the presence of the 
tert-butyl ester was accomplished using 400 mol% of sulfuric acid in tert-butyl acetate [12]. Amine 
protection with the Fmoc group and carboxylate liberation by tert-butyl ester cleavage using TFA 
afforded N-Fmoc-alaninyl-azasulfurylphenylalaninyl-D-phenylalanine (5) in 53% overall yield 
starting from 4. 

 

 Scheme 1. Solution-phase syntheses of azasulfuryltripeptide N-(Fmoc)-Ala-AsF-D-Phe (5). 

 



 

The AsF-tripeptide building block 5 was coupled onto the Lys(Boc) residue bound to Rink amide resin 
6 using HBTU and DIEA in DMF (Scheme 2). Employing piperidine in DMF for Fmoc group 
removals, the peptide was elongated by couplings with Fmoc-D-Trp(Boc), followed by Fmoc-His(Trt) 
using HBTU and DIEA in DMF. Cleavage of the peptide from the resin using a solution of 
TFA:H2O:TES (95:2.5:2.5) in a cold room (4 °C), and purification by HPLC afforded [AsF4]-GHRP-6 
(9) in 12% overall yield from tripeptide 5 (Table 1). 

Notably, an alternative strategy failed to provide the N-aminosulfamide on resin by the attempted 
generation of a supported sulfamidate on treatment of the peptide resin with p-nitrophenyl 
chlorosulfate, followed by coupling to hydrazide. In solution, activation of valine iso-propylamide 
with p-nitrophenyl chlorosulfate gave the desired sulfamidate in only 15% yield, presumably because 
intramolecular cyclization occurred on the C-terminal amide nitrogen to form a sulfahydantoin analog 
(not isolated) [13].  
 

Scheme 2. Solid-phase peptide synthesis of [AsF4]-GHRP-6 (9). 

 

Table 1. Yield and purity of [AsF4]-GHRP-6 (9). 

Peptide 
Crude 
puritya 

Isolated 
Purityb 

Isolated 
Yieldc 

HRMS 

m / z (cal) m / z (obs) 

His-D-Trp-Ala-AsF-D-Phe-Lys-NH2 (9) 73% >99% 12% 893.3851 893.3832 

aCrude peptide purity ascertained by LC-MS analysis using 5-80% MeOH (0.1% FA) in H2O (0.1% FA) as eluent. 
bIsolated peptide purity ascertained by LC-MS analysis in two systems: MeOH (0.1% FA) in H2O (0.1% FA), 
and MeCN (0.1% FA) in H2O (0.1% FA). cIsolated yields calculated based on resin loading. 

 



 

In conclusion, a solid-phase method was developed for the synthesis of [AsF4]-GHRP-6 (9) featuring 
the solution-phase synthesis of AsF tripeptide 5 and its application on Rink amide resin. Building on 
this method for solid-phase synthesis, libraries of azasulfurylpeptides may be generated for studying 
structure-activity relationships. 
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